Environmental and landscape changes drive medium- to large-bodied mammal species composition across an Amazon-Cerrado ecotone amid the deforestation expansion
Abstract
Amazon and Cerrado biomes embrace a vast parcel of Brazilian biodiversity, yet remain understudied in terms of species diversity and distribution, particularly in transitional zones. We investigated the patterns of distribution and multiples facets of medium- to large-bodied mammal diversity across the ecotonal Guaporé river basin, including the relationship of biodiversity variations according to landscape-scale features, such as forest remnants and agribusiness. We sampled mammal fauna via camera-trapping and census, across six independent sites, totalling a sampling effort of 540 camera-trap-days and 720 h census. We also extracted landscape-scale covariables to further predicts the variation in mammalian diversity. Our results revealed that all sites have similar species richness, whereas the zeta-diversity decline ∼90 % when all sites were compared. Differences in species richness – even inconspicuous – and decay of shared species can be associated to the environmental gradient and distance among sites, evidencing a faunistic transictions prompted by rarity and endemism in transitional regions and human-induced landscape changes. The variations in the beta-diversity were caused by a turnover-type structure, once ∼66 % of the balanced variation in composition was due to changes in species distribution across the gradient. Considering the imminent threats to the natural habitats, it is crucial to prioritize the conservation of any natural habitat across the Guaporé basin, given that gamma diversity depends on a vast quantity of native areas. This strategy serves as a fundamental cornerstone for maximizing overall biodiversity conservation across tropical forests.
Funding source: Fundação de Amparo à Pesquisa do Estado de Mato Grosso
Award Identifier / Grant number: 205983/2011
Funding source: TROPIBIO
Award Identifier / Grant number: 854248
Funding source: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Award Identifier / Grant number: 55433020/2010-5
Funding source: Uso sustentável e Bioprospecção da Biodiversidade na Amazônia Meridional/Rede BIONORTE [Conservation, use and bioprospecting of the biodiversity of southern Amazon – Mato Grosso State] Project
Acknowledgments
We extend our thanks to the “Uso sustentável e Bioprospecção da Biodiversidade na Amazônia Meridional/Rede BIONORTE” project for their invaluable logistical support. Our appreciation also goes to CNPq for providing scholarships. Special thanks are extended to Genésio, Sarita, Paulo, Fernando, Roberto – the farm managers – for their essential logistical assistance and for permission for sampling on their properties. Lastly, we express our thanks to Patrick Ricardo de Lázari and Welvis Felipe F. Castilheiro for their dedicated field support. We thank two anonymous reviewers for the valuable contributions to this manuscript. JAB dedicates this manuscript to his friend Anúbis.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: JAB: data analysis, figures and writing of the manuscript draft; RFO: data acquisition and manuscript editing; MSF sampling design, data acquisition, writing and major editing. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Master-degree scholarship to Robson Flores de Oliveira (CNPq Bionorte project). This research p was feasible due to CNPq (no. 55433020/2010-5) and FAPEMAT (no. 205983/2011) grants through the Brazilian BioNorte Network for Biodiversity and Biotechnology of the Legal Amazon, project “Conservation, use and bioprospecting of the biodiversity of southern Amazon – Mato Grosso State”. AFP was supported by the European Union’s Horizon 2020 research and innovation programme under the grant agreement no. 854248 (TROPIBIO).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
Abreu, E.F., Casali, D., Costa-Araújo, R., Garbino, G.S.T., Libardi, G.S., Loretto, D., Loss, A.C., Marmontel, M., Moras, L.M., Nascimento, M.C., et al. (2024). Lista de Mamíferos do Brasil (2024-1) [Data set]. Zenodo, Geneva, Switzerland.Suche in Google Scholar
Aldrich, S., Walker, R., Simmons, C., Caldas, M., and Perz, S. (2012). Contentious land change in the Amazon’s arc of deforestation. Ann. Assoc. Am. Geogr. 102: 103–128, https://doi.org/10.1080/00045608.2011.620501.Suche in Google Scholar
Andrén, H. and Andren, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71: 355–366, https://doi.org/10.2307/3545823.Suche in Google Scholar
Arita, H.T. and Rodríguez, P. (2002). Geographic range, turnover rate and the scaling of species diversity. Ecography 25: 541–550, https://doi.org/10.1034/j.1600-0587.2002.250504.x.Suche in Google Scholar
Arroyo-Rodríguez, V., Fahrig, H., Tabarelli, M., Watling, J.I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I.R., Melo, F.P.L., et al.. (2020). Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23: 1404–1420, https://doi.org/10.1111/ele.13535.Suche in Google Scholar PubMed
Baselga, A. (2013). Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4: 552–557, https://doi.org/10.1111/2041-210X.12029.Suche in Google Scholar
Baselga, A., Orme, C.D.L., Villéger, S., De Bortoli, J., and Leprieur, F. (2017). Betapart: partitioning beta diversity into turnover and nestedness components, R package version 1.4, Available at: http://CRAN.R-project.org/package=betapart.Suche in Google Scholar
Barnosky, A.D., Hadly, E.A., Bascompte, J., Berlow, E.L., Brown, J.H., Fortelius, M., Getz, W.M., Harte, J., Hastings, A., Marquet, P.A., et al.. (2012). Approaching a state-shift in Earth’s biosphere. Nature 486: 52–56, https://doi.org/10.1038/nature11018.Suche in Google Scholar PubMed
Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 1–48.10.18637/jss.v067.i01Suche in Google Scholar
Beca, G., Vancine, M.H., Carvalho, C.S., Pedrosa, F., Alves, R.S.C., Buscariol, D., Peres, C.A., Ribeiro, M.C., and Galetti, M. (2017). High mammal species turnover in forest patches immersed in biofuel plantations. Biol. Conserv. 210: 352–359, https://doi.org/10.1016/j.biocon.2017.02.033.Suche in Google Scholar
Benítez-López, A., Santini, L., Schipper, A.M., Busana, M., and Huijbregts, M.A. (2019). Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17: e3000247, https://doi.org/10.1371/journal.pbio.3000247.Suche in Google Scholar PubMed PubMed Central
Bezerra, A.M.R., Carmignotto, A.P., and Rodrigues, F.H.G. (2009). Small non-volant mammals of an ecotone region between the Cerrado hotspot and the Amazonian rainforest, with comments on their taxonomy and distribution. Zool. Stud. 48: 861–874.Suche in Google Scholar
Bodmer, R., Eisenberg, J.F., and Redford, K.H. (1997). Hunting and the likelihood of extinction of Amazonian mammals. Conserv. Biol. 11: 460–466, https://doi.org/10.1046/j.1523-1739.1997.96022.x.Suche in Google Scholar
Bogoni, J.A., Graipel, M.E., Oliveira-Santos, L.G.R., Cherem, J.J., Giehl, E.L.H., and Peroni, N. (2017). What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity? Biol. Conserv. 211: 85–94, https://doi.org/10.1016/j.biocon.2017.05.012.Suche in Google Scholar
Bogoni, J.A., Peres, C.A., and Ferraz, K.M.P.M.B. (2021a). Medium-to large-bodied mammal surveys across the Neotropics are heavily biased against the most faunally intact assemblages. Mamm. Rev. 52: 221–235, https://doi.org/10.1111/mam.12274.Suche in Google Scholar
Bogoni, J.A., Carvalho-Rocha, V., and da Silva, P.G. (2021b). Spatial and land use determinants of bat species richness, functional diversity and site uniqueness across the largest tropical country worldwide. Mamm. Rev. 52: 267–283, https://doi.org/10.1111/mam.12279.Suche in Google Scholar
Bogoni, J.A., Ferraz, K.M.P.M.B., and Peres, C.A. (2022). Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272: 109635, https://doi.org/10.1016/j.biocon.2022.109635.Suche in Google Scholar
Boubli, J.P., Di Fiore, A., Rylands, A.B., and Mittermeier, R.A. (2008). “Alouatta puruensis”. IUCN red List of threatened species. Version 2011.2. International Union for Conservation of Nature, Gland, Switzerland.Suche in Google Scholar
Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G., et al.. (2002). Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16: 909–923, https://doi.org/10.1046/j.1523-1739.2002.00530.x.Suche in Google Scholar
Casagrande, A.F. and Santos-Filho, M.D. (2019). Use of forest remnants and teak (Tectona grandis) plantations by small mammals in Mato Grosso, Brazil. Stud. Neotrop. Fauna Environ. 54: 181–190, https://doi.org/10.1080/01650521.2019.1656520.Suche in Google Scholar
Castilheiro, W.F.F., Santos-Filho, M., and Oliveira, R.F. (2017). Beta diversity of birds (Passeriformes, Linnaeus, 1758) in southern Amazon. Ciência Anim. Bras. 18: 1–18, https://doi.org/10.1590/1089-6891v18e-40703.Suche in Google Scholar
Chao, A. and Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 6: 873–882, https://doi.org/10.1111/2041-210x.12349.Suche in Google Scholar
Chao, A., Chiu, C.H., and Hsieh, T.C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology 93: 2037–2051, https://doi.org/10.1890/11-1817.1.Suche in Google Scholar PubMed
de Chazal, J. and Rounsevell, M.D.A. (2009). Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Change 19: 306–315, https://doi.org/10.1016/j.gloenvcha.2008.09.007.Suche in Google Scholar
Deane, D.C., Hui, C., and McGeoch, M. (2023). Two dominant forms of multisite similarity decline – their origins and interpretation. Ecol. Evol. 13: e9859, https://doi.org/10.1002/ece3.9859.Suche in Google Scholar PubMed PubMed Central
Di Bitetti, M.S., Paviolo, A., and De Angelo, C. (2006). Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. J. Zool. 270: 153–163, https://doi.org/10.1111/j.1469-7998.2006.00102.x.Suche in Google Scholar
Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B., and Collen, B. (2014). Defaunation in the Anthropocene. Science 345: 401–406, https://doi.org/10.1126/science.1251817.Suche in Google Scholar PubMed
Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guénard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., et al.. (2023). Adespatial: multivariate multiscale spatial analysis, R package version 0.3-21, Available at: https://CRAN.R-project.org/package=adespatial.Suche in Google Scholar
Eisenberg, J.F. and Redford, K.H. (1999). Mammals of the Neotropics: the central Neotropics - Ecuador, Peru, Bolivia, Brasil. The University of Chicago Press, Chicago, Londres, v.3.Suche in Google Scholar
Emmons, L.H. and Feer, F. (1997). Neotropical rainforest mammals: a field guide, 2nd ed. University of Chicago Press, Chicago, London.Suche in Google Scholar
Estavillo, C., Pardini, R., and Rocha, P.L.B. (2013). Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats. PLoS One 8: e82369, https://doi.org/10.1371/journal.pone.0082369.Suche in Google Scholar PubMed PubMed Central
Fearnside, P. (2005). Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19: 680–688, https://doi.org/10.1111/j.1523-1739.2005.00697.x.Suche in Google Scholar
Gentil, E.R. and Fernandez, F.A.S. (1999). Influence of habitat structure on a streamside small mammal community in a Brazilian rural area. Mammalia 63: 29–40, https://doi.org/10.1515/mamm.1999.63.1.29.Suche in Google Scholar
Gómez, H., Wallace, R.B., Ayala, G., and Tejada, R. (2005). Dry season activity periods of some Amazonian mammals. Stud. Neotrop. Fauna Environ. 40: 91–95, https://doi.org/10.1080/01650520500129638.Suche in Google Scholar
Grosberg, R.K., Vermeij, G.J., and Wainwright, P.C. (2012). Biodiversity in water and on land. Curr. Biol. 22: 900–903, https://doi.org/10.1016/j.cub.2012.09.050.Suche in Google Scholar PubMed
Guerin, G.R., Biffin, E., and Lowe, A.J. (2013). Spatial modelling of species turnover identifies climate ecotones, climate change tipping points and vulnerable taxonomic groups. Ecography 36: 1086–1096, https://doi.org/10.1111/j.1600-0587.2013.00215.x.Suche in Google Scholar
Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., et al.. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1: e1500052, https://doi.org/10.1126/sciadv.1500052.Suche in Google Scholar PubMed PubMed Central
Hansen, A.J., Burns, P., Ervin, J., Goetz, S.J., Hansen, M., Venter, O., Watson, J.E.M., Jantz, P.A., Virnig, A.L.S., Barnett, K., et al.. (2020). A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4: 1377–1384, https://doi.org/10.1038/s41559-020-1274-7.Suche in Google Scholar PubMed PubMed Central
Haugaasen, T. and Peres, C.A. (2005). Mammal assemblage structure in Amazonian flooded and unflooded forests. J. Trop. Ecol. 21: 1–13, https://doi.org/10.1017/S026646740400207X.Suche in Google Scholar
Heiberger, M. (2013). HH: statistical analysis and data display: Heiberger and Holland, R package version 2.3-42, Available at: http://CRAN.R-project.org/package=HH.Suche in Google Scholar
Heino, J., Girón, J.G., Hämäläinen, H., Hellsten, S., Iliomen, J., Karjalainen, J., Mäkinen, T., Nyholm, K., Ropponen, J., Takolander, A., et al.. (2022). Assessing the conservation priority of freshwater lake sites based on taxonomic, functional and environmental uniqueness. Divers. Distrib. 28: 1966–1978, https://doi.org/10.1111/ddi.13598.Suche in Google Scholar
Heino, J. and Grönroos, M. (2017). Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia 183: 151–160.10.1007/s00442-016-3754-7Suche in Google Scholar PubMed
Hsieh, T.C., Ma, K.H., and Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7: 1451–1456, https://doi.org/10.1111/2041-210X.12613.Suche in Google Scholar
Hui, C. and McGeoch, M.A. (2014). Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184: 684–694, https://doi.org/10.1086/678125.Suche in Google Scholar PubMed
INPE. (2023). Projeto PRODES - Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite, http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (Accessed 1 March 2023).Suche in Google Scholar
IPAM. (2019). Instituto de Pesquisa Ambiental da Amazônia. Institute of Environmental Research of the Amazon. https://ipam.org.br (Accessed 15 January 2019).Suche in Google Scholar
Kark, S. (2013). Effects of ecotones on biodiversity. In: Levin, S.A. (Ed.). Encyclopedia of biodiversity, 2nd ed. Academic Press, Amsterdam, Netherlands, pp. 142–148.10.1016/B978-0-12-384719-5.00234-3Suche in Google Scholar
Koleff, P., Gaston, K.J., and Lennon, J.J. (2003). Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72: 367–382, https://doi.org/10.1046/j.1365-2656.2003.00710.x.Suche in Google Scholar
Lacher, T.E.J. and Alho, C.J.R. (2001). Terrestrial small mammal richness and habitat associations in an Amazon Forest-Cerrado Contact Zone. Biotropica 33: 171–181, https://doi.org/10.1646/0006-3606(2001)033[0171:tsmrah]2.0.co;2.10.1111/j.1744-7429.2001.tb00166.xSuche in Google Scholar
Lambert, T.D., Adler, G.H., Riveros, C.M., Lopez, L., Ascaino, R., and Terborgh, J. (2003). Rodents on tropical land-bridge islands. J. Zool. 260: 179–187, https://doi.org/10.1017/s0952836903003637.Suche in Google Scholar
Latombe, G., Pyšek, P., Jeschke, J.M., Blackburn, T.M., Bacher, S., Capinha, C., Costello, M.J., Fernández, M., Gregory, R.D., Hobern, D., et al.. (2017). A vision for global monitoring of biological invasions. Biol. Conserv. 213: 295–308, https://doi.org/10.1016/j.biocon.2016.06.013.Suche in Google Scholar
Latombe, G., Lenzner, B., Schertler, A., Dullinger, S., Glaser, M., Jaric, I., Pauchard, A., Wilson, J.R.U., and Essl, F. (2022). What is valued in conservation? A framework to compare ethical perspectives. NeoBiota 72: 45–80, https://doi.org/10.3897/neobiota.72.79070.Suche in Google Scholar
Laurance, W.F., Sayer, J., and Cassman, K.G. (2014). Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29: 107–116.10.1016/j.tree.2013.12.001Suche in Google Scholar PubMed
Lees, A.C. and Peres, C.A. (2008). Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 22: 439–449, https://doi.org/10.1111/j.1523-1739.2007.00870.x.Suche in Google Scholar PubMed
Legendre, P. and De Cáceres, M. (2013). Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16: 951–963, https://doi.org/10.1111/ele.12141.Suche in Google Scholar PubMed
Legendre, P. and Legendre, L. (1998). Numerical ecology, 2nd ed. Elsevier Science BV, Amsterdam.Suche in Google Scholar
Lopes, M.A. and Ferrari, S.F. (2000). Effects of human colonization on the abundance and diversity of mammals in eastern Brazilian Amazonia. Conserv. Biol. 14: 1658–1665, https://doi.org/10.1111/j.1523-1739.2000.98402.x.Suche in Google Scholar PubMed
Michalski, F.E. and Peres, C.A. (2005). Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol. Conserv. 124: 383–396, https://doi.org/10.1016/j.biocon.2005.01.045.Suche in Google Scholar
Michalski, F.E. and Peres, C.A. (2007). Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conserv. Biol. 21: 1626–1640, https://doi.org/10.1111/j.1523-1739.2007.00797.x.Suche in Google Scholar PubMed
Ministério do Meio Ambiente (MMA). (2008). Biodiversidade Brasileira; Avaliação e identificação de áreas e ações prioritárias para conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. Ministério do Meio Ambiente, Brasília.Suche in Google Scholar
Moles, A.T., Warton, D.I., Warman, L., Swenson, N.G., Laffan, S.W., Zanne, A.E., Pitman, A., Hemmings, F.A., and Leishman, M.R. (2009). Global patterns in plant height. J. Ecol. 97: 923–932, https://doi.org/10.1111/j.1365-2745.2009.01526.x.Suche in Google Scholar
Montibeller, B., Kmoch, A., Virro, H., Mander, Ü., and Uuemaa, E. (2020). Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10: 5803, https://doi.org/10.1038/s41598-020-62591-x.Suche in Google Scholar PubMed PubMed Central
Moura, M.R. and Jetz, W. (2021). Shortfalls and opportunities in terrestrial vertebrate species discovery. Nat. Ecol. Evol. 5: 631–639, https://doi.org/10.1038/s41559-021-01411-5.Suche in Google Scholar PubMed
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., et al.. (2013). Vegan: community ecology package, R package version 2.0–10, Available at: http://CRAN.R-project.org/package=vegan.Suche in Google Scholar
Oliveira, M.A., Grillo, A.S., and Tabarelli, M. (2004). Forest edge in the Brazilian Atlantic Forest: drastic changes in tree species assemblages. Oryx 38: 389–394, https://doi.org/10.1017/S0030605304000754.Suche in Google Scholar
Oliveira-Filho, A.T. and Ratter, J.A. (2002). Vegetation physiognomies and woody flora of the Cerrado biome. In: Oliveira, P.S. and Marquis, R.J. (Eds.). The cerrados of Brazil: ecology and natural history of a neotropical savana. Columbia University Press, New York.Suche in Google Scholar
Oliveira-Santos, L.G.R., Tortato, M.A., and Graipel, M.E. (2008). Activity pattern of Atlantic Forest small arboreal mammals as revealed by camera traps. J. Trop. Ecol. 24: 563–567, https://doi.org/10.12933/therya-20-779.Suche in Google Scholar
Palmeirim, A.F., Santos-Filho, M., and Peres, C.A. (2020). Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation Frontier. PLoS One 15: e0230209, https://doi.org/10.1371/journal.pone.0230209.Suche in Google Scholar PubMed PubMed Central
Pardini, R., Bueno, A.A., Gardner, T.A., Prado, P.I., and Metzger, J.P. (2010). Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5: e13666.10.1371/journal.pone.0013666Suche in Google Scholar PubMed PubMed Central
Peres, C.A. (1999). General guidelines for standardizing line-transect surveys of tropical forest primates. Neotrop. Primates 7: 11–16, https://doi.org/10.62015/np.1999.v7.414.Suche in Google Scholar
Peres, C.A. (2000). Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conserv. Biol. 14: 240–253, https://doi.org/10.1046/j.1523-1739.2000.98485.x.Suche in Google Scholar
Peres, C.A. and Cunha, A.A. (2011). Manual para censo e monitoramento de vertebrados de médio e grande porte por transecção linear em florestas tropicais, Wildlife Technical Series. Wildlife Conservation Society, Brasil.Suche in Google Scholar
Peres, C.A. and Lake, I.R. (2003). Extent of nontimber resource extraction in tropical forests: accessibility to game vertebrates by hunters in the Amazon Basin. Conserv. Biol. 2: 521–535, https://doi.org/10.1046/j.1523-1739.2003.01413.x.Suche in Google Scholar
Peres, C.A. and Palacios, E. (2007). Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39: 304–315, https://doi.org/10.1111/j.1744-7429.2007.00272.x.Suche in Google Scholar
Peres, C.A., Emilio, T., Schietti, J., Desmoulière, S.J.M., and Levi, T. (2016). Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. U. S. A. 113: 892–897, https://doi.org/10.1073/pnas.1516525113.Suche in Google Scholar PubMed PubMed Central
Pfeifer, M., Lefebvre, V., Peres, C.A., Banks-Leite, C., Wearn, O.R., Marsh, C.J., Butchart, S.H.M., Arroyo-Rodríguez, V., Barlow, J., Cerezo, A., et al.. (2017). Creation of forest edges has a global impact on forest vertebrates. Nature 551: 187–191, https://doi.org/10.1038/nature24457.Suche in Google Scholar PubMed PubMed Central
Pierangeli, M.A.P., Eguchi, E.S., Ruppin, R.F., Costa, R.B.F., and Vieira, D.F. (2009). Teores de As, Pb, Cd e Hg e fertilidade de solos da região do Vale do Alto Guaporé, sudoeste do estado de Mato Grosso. Revista Acta Amazônica 39: 61–70, https://doi.org/10.1590/S0044-59672009000100006.Suche in Google Scholar
Potapov, P., Hansen, M.C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., Adusei, B., Tyukavina, A., and Ying, Q. (2020). Landsat analysis ready data for global land cover and land cover change mapping. Remote Sens. 12: 426, https://doi.org/10.3390/rs12030426.Suche in Google Scholar
Qian, H. (2009). Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecol. Biogeogr. 18: 327–332, https://doi.org/10.1111/j.1466-8238.2009.00450.x.Suche in Google Scholar
R Core Team. (2023). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: https://www.R-project.org/.Suche in Google Scholar
Regolin, A., Cherem, J.J., Graipel, M.E., Bogoni, J.A., Ribeiro, J.W., Vancine, M.H., Tortato, M.A., Oliveira-Santos, L.G.R., Fantacini, F.M., Luiz, M.R., et al.. (2017). Forest cover influences occurrence of mammalian carnivores within Brazilian Atlantic Forest. J. Mammal. 98: 1721–1731, https://doi.org/10.1093/jmammal/gyx103.Suche in Google Scholar
Rodríguez, P.E. and Arita, H.T. (2004). Beta diversity and latitude in North American mammals: testing the hypothesis of covariation. Ecography 27: 547–556, https://doi.org/10.1111/j.0906-7590.2004.03788.x.Suche in Google Scholar
Ross, J.L.S. (2006). Ecogeografia do Brasil: subsídios para planejamento ambiental. Oficina de Textos, São Paulo, SP.Suche in Google Scholar
Safar, N.V.H., der Sande, M., Schaefer, C.E.G.R., Magnano, L.F.S., Martins, S.V., Simonelli, M., and Poorter, L. (2022). Landscape openness has different effects on the structure, diversity and functional composition of Brazilian rainforests. For. Ecol. Manag. 520: 120395, https://doi.org/10.1016/j.foreco.2022.120395.Suche in Google Scholar
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., et al.. (2000). Global biodiversity scenarios for the year 2100. Science 287: 1770–1774, https://doi.org/10.1126/science.287.5459.1770.Suche in Google Scholar PubMed
Santos-Filho, M. and Da Silva, M.N.F. (2002). Uso de habitats por mamíferos em área de Cerrado do Brasil Central: um estudo com armadilhas fotográficas. Revista Brasileira de Zoociências 4: 45–56.Suche in Google Scholar
Sebastián-González, E., Morales-Reyes, Z., Naves-Alegre, L., Durá Alemañ, C.J., Gonçalves Lima, L., Machado Lima, L., and Sánchez-Zapata, J.A. (2020). Which bait should I use? Insights from a camera trap study in a highly diverse Cerrado forest. Eur. J. Wildl. Res. 66: 99, https://doi.org/10.1007/s10344-020-01439-1.Suche in Google Scholar
Silva, D.S., Ribeiro, M.V., and Soares, F.H. (2023). Medium and large-sized mammals of a private protected wetland in the Cerrado-Amazon biological corridor, Brazil. Braz. J. Biol. 83: e243666, https://doi.org/10.1590/1519-6984.243666.Suche in Google Scholar PubMed
Silva, J.M.C., Rylands, A.B., and Fonseca, G.A.B. (2005). The fate of the Amazonian areas of endemism. Conserv. Biol. 19: 689–694, https://doi.org/10.1111/j.1523-1739.2005.00705.x.Suche in Google Scholar
Silva, P.G., Bogoni, J.A., and Heino, J. (2020). Can taxonomic and functional metrics explain variation in the ecological uniqueness of ecologically associated animal groups in a modified rainforest? Sci. Total Environ. 708: 135171, https://doi.org/10.1016/j.scitotenv.2019.135171.Suche in Google Scholar PubMed
Silva Junior, C.H.L., Pessôa, A.C.M., Carvalho, N.S., Reis, J.B.C., Anderson, L.O., and Aragão, L.E.O.C. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5: 144–145, https://doi.org/10.1038/s41559-020-01368-x.Suche in Google Scholar PubMed
Srbek-Araújo, A.C. and Chiarello, A.G. (2007). Armadilhas fotográficas na amostragem de mamíferos: considerações metodológicas e comparação de equipamentos. Revista Brasileira de Zoologia 24: 647–656, https://doi.org/10.1590/S0101-81752007000300016.Suche in Google Scholar
Swanson, F.J., Wondzell, S.M., and Grant, G.E. (1992). Landforms, disturbance, and ecotones. In: Hansen, A.J. and Castri, F. (Eds.). Landscape boundaries: consequences for biotic diversity and ecological flows. Springer-Verlag, New York, pp. 304–323.10.1007/978-1-4612-2804-2_15Suche in Google Scholar
Tao, S., Guo, Q., Li, C., Wang, Z., and Fang, J. (2016). Global patterns and determinants of forest canopy height. Ecology 97: 3265–3270, https://doi.org/10.1002/ecy.1580.Suche in Google Scholar PubMed
Vilela, S.L. (2007). Simpatria e dieta de Callithrix penicillata (Hershkovits) (Callitrichidae) e Cebus libidinosus (Spix) (Celidae) em matas de Galeria do Distrito Federal, Brasil. Revista Brasileira de Zoologia 24: 601–607, https://doi.org/10.1590/s0101-81752007000300012.Suche in Google Scholar
Voss, R.S. and Emmons, L.H. (1996). Mammalian diversity in neotropical lowland rainforests: a preliminary assessment. Bull. Am. Mus. Nat. Hist., no. 230.Suche in Google Scholar
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., and Smith, G.M. (2009). Mixed effects models and extensions in ecology with R. Springer, New York, USA.10.1007/978-0-387-87458-6Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Ecology
- Habitat suitability and potential landscape corridors for South China sika deer (Cervus pseudaxis)
- Environmental and landscape changes drive medium- to large-bodied mammal species composition across an Amazon-Cerrado ecotone amid the deforestation expansion
- Comparison of the assemblage of medium and large mammals in two sites with differences in human access and environmental conditions in the south of the Yucatan Peninsula, Mexico
- Systematic camera trapping survey of mammals in Ngoc Linh Nature Reserve, Quang Nam, Vietnam
- Opportunistic predation of bats by Cerdocyon thous in a Brazilian urban fragment
- First scientific observation of the largest Sahulian rodent, Mallomys istapantap, in the wild
- Ethology
- Latrine ecology of a solitary ungulate, the Japanese serow: female–male communication site rather than territorial marking?
- Biogeography
- First record of Murina walstoni (Chiroptera: Vespertilionidae) outside Southeast Asia
- Taxonomy/Phylogeny
- A new species of Cryptotis (Eulipotyphla: Soricidae) and introduction to the systematics of the Ecuadorian and Peruvian Cryptotis species
- The karyotype along with molecular data of the Iranian lineage of the bicolored shrew Crocidura leucodon (Hermann, 1780) provides evidence of the species level of C. persica Thomas, 1907
- Discovering species-level homonyms in mammals using the Hesperomys database
- Molecular detection and prevalence of Anaplasma and Rickettsia species in rodents captured from wildlife-human interfaces in Iringa and Morogoro regions, Tanzania
- How to spell species epithet for the steppe polecat: eversmanni or eversmanii?
- Evolutionary Biology
- Rediscovery of an extinct species of caviine rodent of the Late Pleistocene after the Last Glacial Maximum in the Pampasic Domain (Argentina)
Artikel in diesem Heft
- Frontmatter
- Ecology
- Habitat suitability and potential landscape corridors for South China sika deer (Cervus pseudaxis)
- Environmental and landscape changes drive medium- to large-bodied mammal species composition across an Amazon-Cerrado ecotone amid the deforestation expansion
- Comparison of the assemblage of medium and large mammals in two sites with differences in human access and environmental conditions in the south of the Yucatan Peninsula, Mexico
- Systematic camera trapping survey of mammals in Ngoc Linh Nature Reserve, Quang Nam, Vietnam
- Opportunistic predation of bats by Cerdocyon thous in a Brazilian urban fragment
- First scientific observation of the largest Sahulian rodent, Mallomys istapantap, in the wild
- Ethology
- Latrine ecology of a solitary ungulate, the Japanese serow: female–male communication site rather than territorial marking?
- Biogeography
- First record of Murina walstoni (Chiroptera: Vespertilionidae) outside Southeast Asia
- Taxonomy/Phylogeny
- A new species of Cryptotis (Eulipotyphla: Soricidae) and introduction to the systematics of the Ecuadorian and Peruvian Cryptotis species
- The karyotype along with molecular data of the Iranian lineage of the bicolored shrew Crocidura leucodon (Hermann, 1780) provides evidence of the species level of C. persica Thomas, 1907
- Discovering species-level homonyms in mammals using the Hesperomys database
- Molecular detection and prevalence of Anaplasma and Rickettsia species in rodents captured from wildlife-human interfaces in Iringa and Morogoro regions, Tanzania
- How to spell species epithet for the steppe polecat: eversmanni or eversmanii?
- Evolutionary Biology
- Rediscovery of an extinct species of caviine rodent of the Late Pleistocene after the Last Glacial Maximum in the Pampasic Domain (Argentina)