Startseite Is resource partitioning between two sympatric species of Gracilinanus (Didelphimorphia: Didelphidae) related to trophic and spatial niches?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Is resource partitioning between two sympatric species of Gracilinanus (Didelphimorphia: Didelphidae) related to trophic and spatial niches?

  • Cristiano Schetini de Azevedo EMAIL logo , Camilla de Souza Paula , Camila Palhares Teixeira und Leonardo Guimarães Lessa
Veröffentlicht/Copyright: 13. Juli 2022
Mammalia
Aus der Zeitschrift Mammalia Band 86 Heft 6

Abstract

Small mammal species may occur in sympatry, and it is relevant to investigate the mechanisms that lead to coexistence of the closely related species. Despite this, studies evaluating the coexistence of closely related Neotropical marsupials are insipient. The aim of this study was to analyse the mechanisms of resource partitioning between the sympatric species of mouse opossums Gracilinanus agilis and G. microtarsus (Didelphidae), evaluating their trophic and spatial niche. We hypothesized that G. agilis and G. microtarsus differ in at least one niche dimension (space use or food preferences) as a mechanism of coexistence. In the study we analysed trophic niche by evaluating the frequency of occurrence of food items present in Gracilinanus faeces. Also, we analysed spatial niche by comparing the vegetal stratum where the individuals were captured and its relationship with the environmental complexity. Both species presented a high trophic niche overlap, with differences in the frequencies of occurrence of the consumed items. Although the most frequent items in the faeces were Hymenoptera, Isoptera and Coleoptera, their proportion differed significantly between the two species. The variety of food items also differed, with flowers being more frequent in G. agilis diet, whereas fruits were more recorded for G. microtarsus. The spatial niche was very similar, with both species being more captured in the forest understory. However, habitat complexity influenced the abundance of both species, especially litter depth and its biomass of leaves. The results indicated that the coexistence of the two species is associated with the trophic and spatial niche, and that this niche segregation could be allowing closely related species of Gracilinanus to coexist.


Corresponding author: Cristiano Schetini de Azevedo, Programa de Pós-Graduação em Biologia Animal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, MGT 367, no 5000, Cep: 39100-000, Diamantina, Minas Gerais, Brazil; and Departamento de Evolução, Biodiversidade e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, s/n, Bauxita, Cep: 35400-000, Ouro Preto, Minas Gerais, Brazil, E-mail:

Acknowledgements

The authors would like to thank the staff of the Ecology Laboratory of Universidade Federal dos Vales do Jequitinhonha e Mucuri for the assistance in field trips and data analysis, especially Marco Aurélio Pacheco. The authors would also like to thank IEF and SISBIO/MMA for the licenses granted to the work.

  1. Author contributions: Cristiano Schetini de Azevedo: supervision, writing – review & editing. Camilla de Souza Paula: conceptualization, methodology, data curation, formal analysis, writing – original draft, visualization, investigation, writing – review & editing. Camila Palhares Teixeira: formal analysis, writing – review & editing. Leonardo Guimarães Lessa: conceptualization, methodology, writing – original draft, visualization, investigation, writing – review & editing. All the authors actively participated in the discussion of the results, they reviewed and approved the final version of the paper.

  2. Research funding: UFVJM is acknowledged for the scholarship granted to Camila de Souza Paula.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

  4. Research ethics: The study was conducted under the Brazilian environmental agencies’ laws (SISBIO/MMA license n° 52433-1 and IEF/MG license n° 028/2016). This study was approved by the Animal Ethics Committee of the Federal University of the Vales do Jequitinhonha and Mucuri (protocol number 025/2016).

References

Abreu, M.S.L. and Oliveira, L.R. (2014). Patterns of arboreal and terrestrial space use by non-volant small mammals in an Araucaria forest of Southern Brazil. An. Braz. Acad. Sci. 86: 807–819, https://doi.org/10.1590/0001-3765201420130063.Suche in Google Scholar

Alho, C.J.R. (1981). Small mammal populations of Brazilian Cerrado: the dependence of abundance and diversity on habitat complexity. Rev. Bras. Biol. 41: 223–230, https://doi.org/10.1590/S0101-81751989000300001.Suche in Google Scholar

August, P.V. (1983). The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64: 1495–1507, https://doi.org/10.2307/1937504.Suche in Google Scholar

Ayres, M., Junior, A., Ayres, D.L., and dos Santos, A.S. (2007). BioEstat 5.0: aplicações estatísticas nas áreas das ciências biológicas e médicas. Belém: Sociedade Civil Mamirauá/CNPq.Suche in Google Scholar

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67: 1–48, https://doi.org/10.18637/jss.v067.i01.Suche in Google Scholar

Bocchiglieri, A., Mendonça, A.F., and Campos, J.B. (2010). Diet composition of Gracilinanus agilis (Didelphimorphia: Didelphidae) in dry woodland areas of Cerrado in central Brazil. Mammalia 74: 225–227, https://doi.org/10.1515/mamm.2010.019.Suche in Google Scholar

Braz, A.G., Grelle, C.E.V., Figueiredo, M.S.L., and Weber, M.M. (2020). Interpecific competition constains local abundance in highly suitable areas. Ecography 43: 1–12, https://doi.org/10.1111/ecog.04898.Suche in Google Scholar

Cáceres, N.C. and Machado, A.F. (2013). Spatial, dietary and temporal niche dimensions in ecological segregation of two sympatric, congeneric marsupial species. Open Ecol. J. 6: 10–23, https://doi.org/10.2174/1874213001306010010.Suche in Google Scholar

Cáceres, N.C., Ghizoni-Júnior, I.R., and Graipel, M.E. (2002). Diet of two marsupials, Lutreolina crassicaudata and Micoureus demerarae, in a coastal Atlantic Forest island of Brazil. Mammalia 66: 331–340, https://doi.org/10.1515/mamm.2002.66.3.331.Suche in Google Scholar

Cáceres, N.C., Nápoli, R.P., and Hannibal, W. (2011). Differential trapping success for small mammals using pitfall and standard cage traps in woodland savannah region of southeastern Brazil. Mammalia 75: 45–52, https://doi.org/10.1515/MAMM.2010.069.Suche in Google Scholar

Camargo, N.F., Cruz, R.M.S., Ribeiro, J.F., and Vieira, E.M. (2011). Frugivoria e potencial dispersão de sementes pelo marsupial Gracilinanus agilis (Didelphidae: Didelphimorphia) em áreas de Cerrado no Brasil central. Acta Bot. Bras. 25: 646–656, https://doi.org/10.1590/S0102-33062011000300018.Suche in Google Scholar

Carbone, C., Teacher, A., and Rowcliffe, J.M. (2007). The costs of carnivory. PLoS Biol. 5: e22, https://doi.org/10.1371/journal.pbio.0050022.Suche in Google Scholar PubMed PubMed Central

Cartmill, M. (1985). Climbing. In: Hildebrand, M., Bramble, D.M., Liem, K.F., and Wake, D.B. (Eds.), Functional vertebrate morphology. Cambridge, Belknap, pp. 73–88.10.4159/harvard.9780674184404.c5Suche in Google Scholar

Carvalho, F.M.V., Fernandez, F.A.S., and Nessimian, J.L. (2005). Food habits of sympatric opossums coexisting in small Atlantic forest fragments in Brazil. Mamm. Biol. 70: 366–375, https://doi.org/10.1016/j.mambio.2005.08.003.Suche in Google Scholar

Carvalho, R.F., Passos, D.C., and Lessa, L.G. (2019). Diet variations in Short-tailed opossum Monodelphis domestica (Didelphimorphia, Didelphidae) due to seasonal and intersexual factors. Mastozool. Neotrop. 26: 340–348, https://doi.org/10.31687/saremMN.19.26.2.0.14.Suche in Google Scholar

Corrêa, M.R.J., Bellagamba, Y.M., Magalhães, A.P., Martins, J.P.V., Cruz, A.J.R., Kozovitz, A.R., Messias, M.C.T.B., and Azevedo, C.S. (2018). Microhabitat structure and food availability modelling a small mammal assemblage in restored riparian forest remnants. Mammalia 82: 315–327, https://doi.org/10.1515/mammalia-2017-0026.Suche in Google Scholar

Costa, L.P., Leite, Y.L.R., and Patton, J.L. (2003). Phylogeography and systematic notes on two species of gracile mouse opossums, genus Gracilinanus (Marsupialia: Didelphidae) from Brazil. Proc. Biol. Soc. Wash. 116: 275–292.Suche in Google Scholar

Cunha, A.A. and Vieira, M.V. (2002). Support diameter, incline, and vertical movements of four didelphid marsupials in the Atlantic Forest of Brazil. J. Zool. 258: 419–426, https://doi.org/10.1017/S0952836902001565.Suche in Google Scholar

Davies, K.F., Chesson, P., Harrison, S., Inouye, B.D., Melbourne, B.A., and Rice, K.J. (2005). Spatial heterogeneity explains the scale dependence of the native-exotic diversity relationship. Ecology 86: 1602–1610, https://doi.org/10.1890/04-1196.Suche in Google Scholar

Dickman, C.R. (1986). Niche compression: two tests of a hypothesis using narrowly sympatric predator species. Aust. J. Ecol. 11: 121–134, https://doi.org/10.1111/j.1442-9993.1986.tb01383.x.Suche in Google Scholar

Emmons, L. and Feer, F. (1997). Neotropical rainforest mammals: a field guide, 2nd ed. Chicago: University of Chicago Press.Suche in Google Scholar

Feio, M.J., Leite, G.F.M., Rezede, R.S., Medeiros, A.O., Cruz, L.C., Dahora, J.A.S., Calor, A., Neres-Lima, V., Silva-Araújo, M., Callisto, M., et al.. (2018). Maco-scale (biomes) differences in neotropical stream processes and community structure. Global Ecol. Conserv. 16: e00498, https://doi.org/10.1016/j.gecco.2018.e00498.Suche in Google Scholar

Fonseca, G.A.B. and Kierulff, M.C.M. (1989). Biology and natural history of Brazilian Atlantic forest small mammals. Bull. Fla. State Mus. Biol. Sci. 34: 99–152.Suche in Google Scholar

Frazer, G.W., Fournier, R.A., Trofymow, J.A., and Hall, R.J. (2001). A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric. For. Meteorol. 109: 249–263, https://doi.org/10.1016/S0168-1923(01)00274-X.Suche in Google Scholar

Freitas, S.R., Astúa de Moraes, D., Santori, R.T., and Cerqueira, R. (1997). Habitat preference and food use by Metachirus nudicaudatus and Didelphis aurita (Didelphimorphia, Didelphidae) in a restinga forest at Rio de Janeiro. Rev. Bras. Biol. 57: 93–98.Suche in Google Scholar

Galetti, M., Rodarte, R.R., Neves, C.L., Moreira, M., and Costa-Pereira, R. (2016). Trophic niche differentiation in rodents and marsupials revealed by stable isotopes. PLoS One 11: e0152494, https://doi.org/10.1371/journal.pone.0152494.Suche in Google Scholar PubMed PubMed Central

Gardner, A.L. (2007). Mammals of South America. Volume 1: marsupials, xenarthrans, shrews, and bats. Chicago: University of Chicago Press.10.7208/chicago/9780226282428.001.0001Suche in Google Scholar

Gause, G.F. (1932). Experimental studies on the struggle for existence. I. Mixed population of two species of yeast. J. Exp. Biol. 9: 389–402.10.1242/jeb.9.4.389Suche in Google Scholar

Geise, L. and Astúa de Moraes, D. (2009). Distribution extension of sympatric occurrence of Gracilinanus agilis and G. microtarsus (Didelphimorphia, Didelphidae), with cytogenetic notes. Biota Neotrop 9: 269–276.10.1590/S1676-06032009000400030Suche in Google Scholar

Gentile, R., Cardoso, T.S., Costa-Neto, S.F., Teixeira, B.R., and D’Andrea, P.S. (2018). Community structure and population dynamics of small mammals in a human-sylvatic interface area in Rio de Janeiro, Brazil. Zoologia 35: e13465, https://doi.org/10.3897/zoologia.35.e13465.Suche in Google Scholar

Gilbert, B., Srivastana, D.S., and Kirby, K.R. (2008). Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117: 944–950, https://doi.org/10.1111/j.2008.0030-1299.16300.x.Suche in Google Scholar

Glen, A.S. and Dickman, C.R. (2008). Niche overlap between marsupial and eutherian carnivores: does competition threaten the endangered spotted-tailed quoll? J. Appl. Ecol. 45: 700–707, https://doi.org/10.1111/j.1365-2664.2007.01449.x.Suche in Google Scholar

Graipel, M.E., Miller, P.R.M., and Glock, L. (2003). Padrão de atividade de Akodon montensis e Oryzomys russtus na Reserva Volta Velha, Santa Catarina, Sul do Brasil. Mastozool. Neotrop. 19: 255–260.Suche in Google Scholar

Gribel, R. (1988). Visits of Caluromys lanatus (Didelphidae) to flowers of Pseudobombax tomentosum (Bombacaceae): a possible case of pollination by marsupials in central Brazil. Biotropica 20: 344–347, https://doi.org/10.2307/2388329.Suche in Google Scholar

Hernández, M., Ramos, J., Pino, J., and Costa, C.A. (2008). Evaluación de dietas con inclusión de harina de ninfas de Periplaneta americana para la alimentación de la carpa japonesa. Ciencia Pesquera 16: 23–28.Suche in Google Scholar

Hira, F., Mahmood, T.J., Sakhawat, A., Faraz, A., Muhammad, F., and Shaista, A. (2020). Sympatric mongoose species may opt for spatial adjustments to avoid feeding competition at Margalla Hills National Park Islamabad, Pakistan. Wildl. Biol. 2: 00654, doi:https://doi.org/10.2981/wlb.00654.Suche in Google Scholar

Hoffmann, A., Decher, J., Rovero, F., Schaer, J., Voigt, C., and Wibbelt, G. (2010). Field methods and techniques for monitoring mammals. In: Vanden-Spiegel, D., Samyn, Y., Monje, J.C., Häuser, J., and Degreef, J. (Eds.), Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring. UK, ABCTaxa, pp. 483–529.Suche in Google Scholar

Hurlbert, S.H. (1978). The measurement of niche overlap and some relatives. Ecology 59: 67–77, https://doi.org/10.2307/1936632.Suche in Google Scholar

Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211, https://doi.org/10.2307/1942661.Suche in Google Scholar

Hutchinson, G.E. (1959). Homage to Santa Rosalia, or why are there so many kinds of animals? Am. Nat. 93: 145–159.10.1086/282070Suche in Google Scholar

IBGE (2014). Instituto Brasileiro de Geografia e Estatística. Geociências: mapas temáticos. Disponível em: http://downloads.ibge.gov.br/downloads_geociencias.htm (Accessed 25 Jan 2022).Suche in Google Scholar

Jones, M.E. and Barmuta, L.A. (2000). Niche differentiation among sympatric Australian dasyurid carnivores. J. Mammal. 81: 434–447, https://doi.org/10.1644/1545-1542(2000)081<0434:NDASAD>2.0.CO.10.1644/1545-1542(2000)081<0434:NDASAD>2.0.CO;2Suche in Google Scholar

Kajin, M. and Grelle, C.E.V. (2012). Microhabitat selection when detection is imperfect: the case of an endemic Atlantic Forest mammal. Ecol. Res. 27: 1005–1013, https://doi.org/10.1007/s11284-012-0977-x.Suche in Google Scholar

Kalinkat, G., Jochum, M., Brose, U., and Dell, A.I. (2015). Body size and the behavioural ecology of insects: linking individuals to ecological communities. Curr. Opin. Insect Sci. 9: 24–30, https://doi.org/10.1016/j.cois.2015.04.017.Suche in Google Scholar

Korschgen, J.L. and Korschgen, L.J. (1987). Procedimientos para el analisis de los hábitos alimentarios: manual de técnicas de gestión de vida silvestre. Maryland: The Wildlife Society Maryland.Suche in Google Scholar

Krebs, C.J. (1999). Ecological methodology, 2nd ed. California: Benjamin Cummings.Suche in Google Scholar

Kuhnen, V.V., Romero, G.Q., Linhares, A.X., Vizentin-Bugoni, J., Porto, E.A.C., and Setz, E.Z.F. (2017). Diet overlap and spatial segregation between two neotropical marsupials revealed by multiple analytical approaches. PLoS One 12: 1–16, https://doi.org/10.1371/journal.pone.0181188.Suche in Google Scholar

Lotka, A.J. (1932). The growth of mixed populations: two species competing for a common food supply. J. Wash. Acad. Sci. 22: 461–469.10.1007/978-3-642-50151-7_12Suche in Google Scholar

Lambert, T.D., Malcolm, J.R., and Zimmerman, B.L. (2006). Amazonian small mammal abundances in relation to habitat structure and resource abundance. J. Mammal. 87: 766–776, https://doi.org/10.1644/05-MAMM-A-261R1.1.Suche in Google Scholar

Leimgruber, P., McShea, W.J., and Songer, M. (2014). Vertical habitat segregation as a mechanism for coexistence in sympatric rodents. Mammalian Biol 79: 313–317, https://doi.org/10.1016/j.mambio.2014.04.002.Suche in Google Scholar

Leiner, N.O. and Silva, W.R. (2007). Seasonal variation in the diet of the Brazilian slender opossum (Marmosops paulensis) in a montane Atlantic forest area, southeastern Brazil. J. Mammal. 88: 158–164, https://doi.org/10.1644/06-MAMM-A-088R2.1.Suche in Google Scholar

Leiner, N.O., Dickman, C.R., and Silva, W.R. (2010). Multiscale habitat selection by slender opossums (Marmosops spp.) in the Atlantic Forest of Brazil. J. Mammal. 91: 561–565, https://doi.org/10.1644/09-MAMM-A-328.1.Suche in Google Scholar

Lessa, L.G. and Costa, F.N. (2010). Diet and seed dispersal by five marsupials (Didelphimorphia, Didelphidade) in a Brazilain cerrado reserve. Mamm. Biol. 75: 2–16, https://doi.org/10.1016/j.mambio.2008.11.002.Suche in Google Scholar

Lessa, L.G. and Geise, L. (2014). Food habits and carnivory by a small size opossum, Gracilinanus agilis (Didelphimorphia: Didelphidae). Mastozool. Neotrop. 21: 139–143.Suche in Google Scholar

Lessa, L.G. and Paula, C.S. (2014). Community structure of small mammals in an area of riparian savanna in Parque Estadual do Rio Preto, Minas Gerais, Brazil. Neotrop. Biol. Conserv 9: 98–104, https://doi.org/10.4013/nbc.2014.92.04.Suche in Google Scholar

Lessa, L.G., Geise, L., and Costa, F.N. (2013). Effects of gut passage on the germination of seeds ingested by didelphid marsupials in a neotropical savanna. Acta Bot. Bras. 27: 519–525, https://doi.org/10.1590/S0102-33062013000300009.Suche in Google Scholar

Liu, F., Wang, J., and Liu, H. (2019). Seasonal variations in food resource partitioning among four sympatric gudgeon species in the upper Yangtze River. Ecol. Evol. 9: 7227–7236, https://doi.org/10.1002/ece3.5293.Suche in Google Scholar PubMed PubMed Central

Loss, S., Costa, L.P., and Leite, Y.L.R. (2011). Geographic variation, phylogeny and systematic status of Gracilinanus microtarsus (Mammalia: Didelphimorphia: Didelphidae). Zootaxa 27: 1–33, https://doi.org/10.11646/zootaxa.2761.1.1.Suche in Google Scholar

Mac Arthur, R.H., Mac Arthur, J.W., and Preer, J. (1962). On bird species diversity II. Prediction of bird census from habitat measurements. Am. Nat. 96: 167–174, https://doi.org/10.1086/282219.Suche in Google Scholar

Malcolm, J.R. (1995). Ecology and conservation of canopy mammals. In: Lowman, M.D. and Nadkarni, M.N.(Eds.), Forest canopies. Academic Press, San Diego, pp. 297–331.10.1016/B978-012457553-0/50021-6Suche in Google Scholar

Martins, E.G. and Bonato, V. (2004). On the diet of Gracilinanus microtarsus (Marsupialia, Didelphidae) in an Atlantic rainforest fragment in southeastern Brazil. Mamm. Biol. 69: 58–60, https://doi.org/10.1078/1616-5047-116.Suche in Google Scholar

Martins, E.G., Bonato, V., Pinheiro, H.P., and Dos Reis, S.F. (2006). Diet of the gracile mouse opossum (Gracilinanus microtarsus) (Didelphimorphia: Didelphidae) in a Brazilian Cerrado: patterns of food consumption and intrapopulation variation. J. Zool. 269: 21–28, https://doi.org/10.1111/j.1469-7998.2006.00052.x.Suche in Google Scholar

Martins, E.G., Bonato, V., and Dos Reis, S.F. (2008). Sex and season affect individual level diet variation in the Neotropical marsupial Gracilinanus microtarsus (Didelphidae). Biotrop 40: 132–135, https://doi.org/10.1111/j.1744-7429.2007.00319.x.Suche in Google Scholar

Mataveli, G.A.V. and Chaves, M.E.D. (2014). Proceedings of the first annual meeting of geography in Minas Gerais, May 26-30, 2014: análise da distribuição espacial dos focos de queimada no estado de Minas Gerais entre 2009 e 2012. Alfenas: Universidade Federal de Alfenas.Suche in Google Scholar

Melo, G. and Sponchiado, J. (2012). Distribuição geográfica dos marsupiais no Brasil. In: Cáceres, N.C. (Ed.), Os marsupiais do Brasil: biologia, ecologia e evolução. Campo Grande, Editora da Universidade Federal do Mato Grosso do Sul, pp. 93–110.Suche in Google Scholar

Melo, G.L., Miotto, B., Peres, B., and Cáceres, N.C. (2013). Microhabitat of small mammals at the ground and understorey levels in a deciduous, Southern Atlantic Forest. An Acad. Bras Ciências 85: 727–736, https://doi.org/10.1590/S0001-37652013000200017.Suche in Google Scholar PubMed

Melo, G.L., Santos, S.A., Sponchiado, J., Cáceres, N.C., and Lessa, L.G. (2018). Feeding ecology of the marsupial Thylamys macrurus (Olfers 1818) (Mammalia, Didelphidae) in woodland patches of Cerrado, central-western Brazil. Mammalia 83: 41–48, https://doi.org/10.1515/mammalia-2017-0068.Suche in Google Scholar

Moura, M.C., Caparelli, A.C., Freitas, S.R., and Vieira, M.V. (2005). Scale-dependent habitat selection in three didelphid marsupials using the spool-and-line technique in the Atlantic Forest of Brazil. J. Trop. Ecol. 21: 337–342, https://doi.org/10.1017/S0266467405002270.Suche in Google Scholar

Naxara, L., Pinotti, B.T., and Pardini, R. (2009). Seasonal microhabitat selection by terrestrial rodents in an old-growth Atlantic Forest. J. Mammal. 90: 404–415, https://doi.org/10.1644/08-MAMM-A-100.1.Suche in Google Scholar

Neves, S.C.N., Abreu, P.A.A., and Fraga, L.M.S. (2005). Fisiografia. In: Silva, A.C., Pedreira, L.C.V.S.F., and Abreu, P.A.A. (Eds.), Serra do Espinhaço Meridional: paisagens e ambientes. Belo Horizonte, O Lutador, pp. 47–58.Suche in Google Scholar

Nie, Y., Zhou, W., Gao, K., Swaisgood, R., and Wei, F. (2019). Seasonal competition between sympatric species for a key resource: implications for conservation management. Biol. Conserv. 234: 1–6, https://doi.org/10.1016/j.biocon.2019.03.013.Suche in Google Scholar

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., et al.. (2020). Vegan: community ecology package (Version 2.5-5), Available at: https://cran.r-project.org/web/packages/vegan/index.html (Accessed 31 Mar 2022).Suche in Google Scholar

Oliveira-Santos, L.G.R., Tortato, M.A., and Graipel, M.E. (2008). Activity pattern of Atlantic Forest arboreal mammals as revealed by camera traps. J. Trop. Ecol. 24: 563–567, https://doi.org/10.1017/S0266467408005324.Suche in Google Scholar

Osorio, C., Muñoz, A., Guarda, N., Bonacic, C., and Kelly, M. (2020). Exotic prey facilitate coexistence between pumas and Culpeo foxes in the Andes of the central Chile. Diversity 12: 317, https://doi.org/10.3390/d12090317.Suche in Google Scholar

Paglia, A.P., Fonseca, G.A.B., Rylands, A.B., Herrmann, G., Aguiar, L.M.S., Chiarello, A.G., Leite, Y.L.R., Costa, L.P., Siciliano, S., Kierulff, M.C.M., et al.. (2012). Annotated checklist of Brazilian mammals, 2nd ed. Washington: Conservation International.Suche in Google Scholar

Passamani, M. (1995). Vertical stratification of small mammals in Atlantic hill forest. Mammalia 59: 276–279.Suche in Google Scholar

Santos-Filho, M., Silva, D.J., and Sanaiotti, T.M. (2008). Variação sazonal na riqueza e na abundância de pequenos mamíferos, na estrutura da floresta e na disponibilidade de artrópodes em fragmentos florestais no Mato Grosso, Brasil. Biota Neotrop 8: 115–121, https://doi.org/10.1590/S1676-06032008000100014.Suche in Google Scholar

R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Suche in Google Scholar

Santori, R.T., Lessa, L.G., and Astúa de Moraes, D. (2012). Alimentação, nutrição e adaptação alimentar de marsupiais Brasileiros. In: Cáceres, N.C. (Ed.), Os marsupiais do Brasil: biologia, ecologia e evolução. Campo Grande, Editora da Universidade Federal do Mato Grosso do Sul, pp. 337–359.Suche in Google Scholar

Schoener, T.W. (1974). Resource partitioning in ecological communities. Science 185: 27–38.10.1126/science.185.4145.27Suche in Google Scholar PubMed

Silva, D.H.S., Castro-Gamboa, I., and Bolzani, V.S. (2010). Plant diversity from Brazilian cerrado and Atlantic forest as a tool for prospecting potential therapeutic drugs. In: Mander, L. and Liu, H.-W. (Eds.), Comprehensive natural products II: chemistry and biology. Amsterdam, Elsevier, pp. 95–133.10.1016/B978-008045382-8.00061-7Suche in Google Scholar

Torretta, E., Riboldi, L., Costa, E., Delfoco, C., Frignani, E., and Meriggi, A. (2021). Niche partitioning between sympatric wild canids: the case of the golden jackal (Canis aureus) and the red fox (Vulpes vulpes) in north-eastern Italy. BMC Ecol. Evol. 21: 129, https://doi.org/10.1186/s12862-021-01860-3.Suche in Google Scholar PubMed PubMed Central

Vieira, E.M. and Ástua de Moraes, D. (2003). Carnivory and insectivory in neotropical marsupials. In: Jones, M., Dickman, C., and Archers, M. (Eds.), Predators with pouches: the biology of carnivorous marsupials. Collingwood, CSIRO Publishing, pp. 271–284.Suche in Google Scholar

Vieira, E.M. and Camargo, N.F. (2012). Padrões de uso vertical do habitat por marsupiais brasileiros. In: Cáceres, N.C. (Ed.), Os marsupiais do Brasil: biologia, ecologia e evolução. Campo Grande, Editora da Universidade Federal do Mato Grosso do Sul, pp. 347–364.Suche in Google Scholar

Vieira, E.M. and Monteiro-Filho, E.L.A. (2003). Vertical stratification of small mammals in the Atlantic rain forest of south-eastern Brazil. J. Trop. Ecol. 19: 501–507, https://doi.org/10.1017/S0266467403003559.Suche in Google Scholar

Vieira, M.F., Carvalho-Okano, R.M., and Sazima, M. (1991). The common opossum Didelphis marsupialis as a pollinator of Mabea fistulifera (Euphorbiaceae). Ciencia e Cult. 43: 390–393.Suche in Google Scholar

Wang, Z., Shi, Y., Qiu, Z., Che, Y., and Lo, N. (2017). Reconstructing the phylogeny of Blattodea: robust support for interfamilial relationships and major clades. Sci. Rep. 7: 3903, https://doi.org/10.1038/s41598-017-04243-1.Suche in Google Scholar PubMed PubMed Central

Wells, K., Pfeiffer, M., Lakim, M.B., and Linsenmair, K.E. (2004). Use of arboreal and terrestrial space by a small mammal community in a tropical rain forest in Borneo, Malaysia. J. Biogeogr. 31: 641–652, https://doi.org/10.1046/j.1365-2699.2003.01032.x.Suche in Google Scholar

Witczuk, J., Pagacz, S., Gliwicz, J., and Mills, L.S. (2015). Niche overlap between sympatric coyotes and bobcats in highland zones of Olympic Mountains, Washington. J. Zool. 297: 176–183, https://doi.org/10.1111/jzo.12270.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/mammalia-2021-0157).


Received: 2021-09-28
Accepted: 2022-06-07
Published Online: 2022-07-13
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Obituary
  3. François Catzeflis (1953–2021)
  4. Ecology
  5. Hunting and water scarcity affect habitat occupancy by peccaries (Tayassu pecari and Pecari tajacu) in Calakmul, Mexico
  6. Camera trapping arboreal mammals in Argentina’s Atlantic Forest
  7. Activity patterns and burrowing ecology of the giant pouched rat (Cricetomys emini) in Tshuapa Province, D. R. Congo
  8. Is resource partitioning between two sympatric species of Gracilinanus (Didelphimorphia: Didelphidae) related to trophic and spatial niches?
  9. Gone before it’s known? Camera-trapping shows alarming levels of putative hybrids in the wildcat (Felis silvestris) population of the Gargano National Park (Southern Italy)
  10. A note on bat faunal assessment in Karuna bat cave, Baglung, Nepal
  11. Long-distance dispersal of two species of shrews (Sorex caecutiens Laxmann, 1788 and Sorex minutus Linnaeus, 1766)
  12. Conservation
  13. A new threat for the rarest neotropical carnivore: the vulnerable Colombian weasel, Neogale felipei
  14. Evolutionary Biology
  15. Assessment of craniometric sexual dimorphism and ontogenetic variation in invasive Rattus norvegicus and R. rattus from urban and peri-urban areas of Gauteng Province, South Africa
  16. A geometric morphometric analysis of geographic variation in the Cape Short-eared gerbil, Desmodillus auricularis (Rodentia: Gerbillinae)
  17. Taxonomy/Phylogeny
  18. Cephalic shield morphology as species diagnostic trait and individual natural mark in three-banded armadillos (Tolypeutes; Cingulata: Chlamyphoridae)
  19. Annotations on the taxonomy of the opossums (Didelphimorphia: Didelphidae) of Honduras
  20. Clarifying the taxonomic status of Crocidura cantabra Cabrera, 1908 (Eulipotyphla: Soricidae: Crocidurinae)
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2021-0157/html
Button zum nach oben scrollen