Home Linguistics & Semiotics Application of natural language processing for the recognition of obesity-related topics in the discourses of Argentine Twitter users
Article
Licensed
Unlicensed Requires Authentication

Application of natural language processing for the recognition of obesity-related topics in the discourses of Argentine Twitter users

  • Eugenia Haluszka ORCID logo , Camila Niclis ORCID logo , Antonio Pareja Lora and Laura Rosana Aballay ORCID logo EMAIL logo
Published/Copyright: December 13, 2024

Abstract

The global burden of obesity has risen due to various factors, including sociocultural aspects. Social representations (SRs) of obesity could help to understand the problem. Nowadays, social networks activate new social interaction processes and enable the construction of SRs. Tweets can identify mind-sets as cultural reflections of the times. This study aimed to identify widely shared obesity topics on Twitter-Argentina using Natural Language Processing. First, 134,766 Spanish tweets about obesity were collected from August 2021 to July 2022. Next, a geolocation filter removed non-Argentinian messages, leaving 48,149 tweets. The body text was cleaned and prepared for analysis. K-means clustering model was applied and 21 clusters were identified after reaching theoretical saturation. Then, 10 tweets from each cluster were randomly selected to analyse word usage and identify cluster themes. Thus, the main themes were “Gender-related”, “Obesity and family”, “Hate speech and fatphobia”, “Body image, perceptions and feelings”, “Public health actions” and “Obesity as a health-disease process”. These aggregations allowed us to understand obesity as a sociocultural phenomenon, the Argentinian culture-specific discourses surrounding it, and their connections to health. We firmly believe that this valuable information will enlighten the planning of future social-political actions to address this health-disease process.


Corresponding author: Laura Rosana Aballay, Faculty of Medical Sciences, Human Nutrition Research Centre (CenINH), School of Nutrition, National University of Córdoba, Córdoba, Argentina, E-mail:

Award Identifier / Grant number: PICT-2020-A-03283

Award Identifier / Grant number: PIIDTA-IA RESOL-2024-61-E-UNC-SECYT#ACTIP

Award Identifier / Grant number: RESOL-2023-266-E-UNC-SECYT#ACTIP

Acknowledgements

The authors would like to thank the AUIP, the sponsoring institution of the Academic Mobility Scholarship Programme, which supported the international exchanges. We also thank Prof. Laura Alonso Alemany for her invaluable academic contributions.

  1. Research funding: This work was supported by the Fondo para la Investigación Científica y Tecnológica (PICT-2020-A-03283) and Secretaria de Ciencia y Tecnología – Universidad Nacional de Córdoba (PIIDTA-IA RESOL-2024-61-E-UNC-SECYT#ACTIP, RESOL-2023-266-E-UNC-SECYT#ACTIP).

References

Aballay, Laura R., Aldo Eynard, María del Pilar Díaz, Alicia Navarro & Sonia E. Muñoz. 2013. Overweight and obesity: A review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutrition Reviews 71(3). 168–179. https://doi.org/10.1111/j.1753-4887.2012.00533.x.Search in Google Scholar

Aballay, Laura R., Julia Coquet Becaria, Graciela F. Scruzzi, Eugenia Haluszka, Carlos G. Franchini, Paula Carreño, Elias Raboy, María D. Román, Camila Niclis, Marcos Balangero, Natalia Altamirano, María G. Barbás & Laura López. 2022. Estudio de base poblacional de seroprevalencia y factores asociados a la infección por SARS-CoV-2 en Córdoba, Argentina [A population-based study on seroprevalence and factors associated with SARS-CoV-2 infection in Córdoba, Argentina]. Cadernos de saude publica 38(4). ES219821. https://doi.org/10.1590/0102-311XES219821.Search in Google Scholar

Baez, Andrew S., Lola R. Ortiz-Whittingham, Hannatu Tarfa, Foster Osei Baah, Keitra Thompson, Yvonne Baumer & Tiffany M. Powell-Wiley. 2023. Social determinants of health, health disparities, and adiposity. Progress in Cardiovascular Diseases 78. 17–26. https://doi.org/10.1016/j.pcad.2023.04.011.Search in Google Scholar

Bishop, Christopher M. 2006. Pattern Recognition and machine learning. New York, NY: Springer.Search in Google Scholar

Boon-Itt, Sakun & Yukolpat Skunkan. 2020. Public perception of the COVID-19 pandemic on Twitter: Sentiment analysis and topic modeling study. JMIR Public Health and Surveillance 6(4). e21978. https://doi.org/10.2196/21978.Search in Google Scholar

Braguinsky, Jorge. 2007. Concepto, definición y diagnóstico. En: Obesidad, saberes y conflictos, un tratado de obesidad. Argentina, Editorial Medica AWWE.Search in Google Scholar

Cockerham, William C. 2022. Theoretical approaches to research on the social determinants of obesity. American Journal of Preventive Medicine 63(Suppl 1). S8–S17. https://doi.org/10.1016/j.amepre.2022.01.030.Search in Google Scholar

Cohen, Jordana B. 2017. Hypertension in obesity and the impact of weight loss. Current Cardiology Reports 19(10). 98. https://doi.org/10.1007/s11886-017-0912-4.Search in Google Scholar

Coleman, John C. & Leo B. Hendry. 2003. Psicología de la adolescencia [Psychology of adolescence]. Madrid: Morata.Search in Google Scholar

De Girolami, Daniel H. 1999. Definición y medios diagnóstico [Definition and diagnostic means]. En: Braguinsky J. Obesidad [obesity] (2da edición p. 15–39). Buenos Aires; El Ateneo.Search in Google Scholar

Deek, Melanie R., Ivanka Prichard & Eva Kemps. 2023. The mother-daughter-sister triad: The role of female family members in predicting body image and eating behaviour in young women. Body Image 46. 336–346. https://doi.org/10.1016/j.bodyim.2023.07.001.Search in Google Scholar

DeJong, William. 1980. The stigma of obesity: The consequences of naive assumptions concerning the causes of physical deviance. Journal of Health and Social Behavior 21. 75–87. https://doi.org/10.2307/2136696.Search in Google Scholar

Drury, Christine A. A. & Margaret Louis. 2002. Exploring the association between body weight, stigma of obesity, and health care avoidance. Journal of the American Academy of Nurse Practitioners 14(12). 554e561–561. https://doi.org/10.1111/j.1745-7599.2002.tb00089.x.Search in Google Scholar

Escandón-Nagel, Neli, José F. Vargas, Ana C. Herrera & Ana M. Pérez. 2018. Body image on sex and nutritional status: Association with the construction of self and others. Revista Mexicana de Trastornos Alimentarios 10(1). 32–41. https://doi.org/10.22201/fesi.20071523e.2019.1.521.Search in Google Scholar

Faruque, Samir, Janice Tong, Vuk Lacmanovic, Christiana Agbonghae, Dulce M. Minaya & Krzysztof Czaja. 2019. The dose makes the poison: Sugar and obesity in the United States – A review. Polish Journal of Food and Nutrition Sciences 69(3). 219–233. https://doi.org/10.31883/pjfns/110735.Search in Google Scholar

Forth, Christopher E. 2015. Fat and fattening: Agency, materiality and animality in the history of corpulence. Body Politics: Zeitschrift für Körpergeschichte 3(5). 51–74.Search in Google Scholar

Friedman, Kelli E., Simona K. Reichmann, Philip R. Costanzo, Arnaldo Zelli, Jamile A. Ashmore & Gerard J. Musante. 2005. Weight stigmatization and ideological beliefs: Relation to psychological functioning in obese adults. Obesity Research 13. 907e916–916. https://doi.org/10.1038/oby.2005.105.Search in Google Scholar

Ginsberg, Jeremy, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant. 2009. Detecting influenza epidemics using search engine query data. Nature 457(7232). 1012–1014. https://doi.org/10.1038/nature07634.Search in Google Scholar

González-Calderón, María J. & Jose I. Baile. 2013. Intervención psicológica en obesidad. Madrid: Pirámide.Search in Google Scholar

Hartigan, John A. 1975. Clustering algorithms. New York, NY, US: John Wiley y Sons, Inc.Search in Google Scholar

Hernández-Garduño, Eduardo. 2020. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obesity Research & Clinical Practice 14(4). 375–379. https://doi.org/10.1016/j.orcp.2020.06.001.Search in Google Scholar

Holland, Grace & Marika Tiggemann. 2016. A systematic review of the impact of the use of social networking sites on body image and disordered eating outcomes. Body Image 17. 100–110. https://doi.org/10.1016/j.bodyim.2016.02.008.Search in Google Scholar

Honnibal, Matthew & Ines Montani. 2017. SpaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. Sentometrics Research, In press.Search in Google Scholar

Ibrohim, Muhammad O. & Indra Budi. 2023. Hate speech and abusive language detection in Indonesian social media: Progress and challenges. Heliyon 9(8). e18647. https://doi.org/10.1016/j.heliyon.2023.e18647.Search in Google Scholar

Keery, Helene, Patricia van den Berg & Kevin J. Thompson. 2004. An evaluation of the Tripartite Influence Model of body dissatisfaction and eating disturbance with adolescent girls. Body Image 1(3). 237–251. https://doi.org/10.1016/j.bodyim.2004.03.001.Search in Google Scholar

Krueger, Richard A. & Mary Anne Casey. 2000. Focus groups: A practical guide for applied research, 3rd edn. Thousand Oaks, CA: Sage.Search in Google Scholar

Latner, Janet D., Wilson G. Terence, Mary L. Jackson & Albert J. Stunkard. 2009. Greater history of weight-related stigmatizing experience is associated with greater weight loss in obesity treatment. Journal of Health Psychology 14. 190e199.10.1177/1359105308100203Search in Google Scholar

Lovering, Meghan E., Rachel F. Rodgers, Jessica E. George & Debra L. Franko. 2018. Exploring the Tripartite Influence Model of body dissatisfaction in postpartum women. Body Image 24. 44–54. https://doi.org/10.1016/j.bodyim.2017.12.001.Search in Google Scholar

Lui, Chi-Wai, Zaimin Wang, Ning Wang, Gabriel Milinovich, Hang Ding, Kerrie Mengersen, Hilary Bambrick & Wenbiao Hu. 2021. A call for better understanding of social media in surveillance and management of noncommunicable diseases. Health Research Policy and Systems 19(1). 18. https://doi.org/10.1186/s12961-021-00683-4.Search in Google Scholar

Macionis, John. 1993. Sociology, 4th edn. New Jersey: Prentice Hall.Search in Google Scholar

Mancuso, Lucia, María B. Longhi, María G. Pérez, Andrea Majul, Erica Almeida & Lorena Carignani. 2021. Diversidad corporal, pesocentrismo y discriminación: la gordofobia como fenómeno discriminatorio [Body diversity, pesocentrism and discrimination: fatphobia as a discriminatory phenomenon]. Revista Inclusive 4. 12–16.Search in Google Scholar

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado & Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems. 3111–3119.Search in Google Scholar

Morse, Janice. 1995. The significance of saturation. Qualitative Health Research 5(2). 147–149. https://doi.org/10.1177/104973239500500201.Search in Google Scholar

National Institute against discrimination, xenophobia and racism. 2019. National discrimination Map 2019. Second series of statistics on discrimination in Argentina. Buenos Aires: INADI.Search in Google Scholar

Panamerican Health Organization. 2012. Determinantes e inequidades en salud. Washington: Biblioteca Sede OPS.Search in Google Scholar

Panamerican Health Organization. 2016. La eSalud en la Región de las Américas: derribando las barreras a la implementación. Washington-DC Available at: https://iris.paho.org/xmlui/handle/123456789/31287.Search in Google Scholar

Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blonder, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeu, Mathieu Brucher, Mathieu Perrot & Édouard Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12. 2825–2830.Search in Google Scholar

Pérez, Juan M. & Franco M. Luque. 2019. Atalaya at SemEval 2019 task 5: Robust embeddings for tweet classification. In Proceedings of the 13th international Workshop on semantic evaluation, 64–69. Minneapolis, Minnesota, USA: Association for Computational Linguistics.10.18653/v1/S19-2008Search in Google Scholar

Popkin, Barry M., Shufa Du, William D. Green, Melinda A. Beck, Taghred Algaith, Cristopher H. Herbst, Reem F. Alsukait, Mohammed Alluhidan, Nahar Alazemi & Shekar Meera. 2020. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity 21(11). e13128. https://doi.org/10.1111/obr.13128.Search in Google Scholar

Pou, Sonia A., Julia M. Wirtz Baker & Laura R. Aballay. 2023. Epidemia de obesidad: evidencia actual, desafíos y direcciones futuras [Obesity epidemic: Current evidence, challenges and future directions]. Medicina 83(2). 283–289.Search in Google Scholar

Power, Michael L. & Jay Schulkin. 2008. Sex differences in fat storage, fat metabolism, and the health risks from obesity: Possible evolutionary origins. British Journal of Nutritio 99(5). 931–940. https://doi.org/10.1017/S0007114507853347.Search in Google Scholar

Raich, Rosa M. 2013. Imagen corporal: Conocer y valorar el propio cuerpo [Body image: Knowing and valuing one’s own body]. Madrid: Pirámide.Search in Google Scholar

Rodgers, Rachel, Henri Chabrol & Susan J. Paxton. 2011. An exploration of the tripartite influence model of body dissatisfaction and disordered eating among Australian and French college women. Body Image 8(3). 208–215. https://doi.org/10.1016/j.bodyim.2011.04.009.Search in Google Scholar

Rodríguez, Juan F. 2013. Alteraciones de la imagen corporal [Body image disturbances]. Madrid: Síntesis.Search in Google Scholar

Saguy, Abigail C. & Kevin W. Riley. 2005. Weighing both sides: Morality, mortality, and framing contests over obesity. Journal of Health Politics, Policy and Law 30. 869e921–923. https://doi.org/10.1215/03616878-30-5-869.Search in Google Scholar

Sanday, Julieta, Scappatura M. Luz & Guillermina Rutsztein. 2020. Impacto de la pandemia por COVID-19 en los hábitos alimentarios y la Imagen Corporal [Impact of the COVID-19 pandemic on eating habits and body image]. XII Congreso Internacional de Investigación y Práctica Profesional en Psicología. XXVII Jornadas de Investigación. XVI Encuentro de Investigadores en Psicología del MERCOSUR. II Encuentro de Investigación de Terapia Ocupacional. II Encuentro de Musicoterapia. Facultad de Psicología. Buenos Aires: Universidad de Buenos Aires.Search in Google Scholar

Silva, Leandro, Mainack Mondal, Denzil Correa, Fabricio Benevenuto & Ingmar Weber. 2016. Analyzing the targets of hate in online social media. Proceedings of the International AAAI Conference on Web and Social Media 10(1). 687–690. https://doi.org/10.1609/icwsm.v10i1.14811.Search in Google Scholar

Slevec, Julie & Marika Tiggemann. 2010. Attitudes toward cosmetic surgery in middle-aged women: Body image, aging anxiety, and the media. Psychology of Women Quarterly 34(1). 65–74. https://doi.org/10.1111/j.1471-6402.2009.01542.x.Search in Google Scholar

So, Jiyeon, Abby Prestin, Lyndon Lee, Yafei Wang, John Yen & Wen-Ying S. Chou. 2016. What do people like to “share” about obesity? A content analysis of frequent retweets about obesity on Twitter. Health Communication 31(2). 193–206. https://doi.org/10.1080/10410236.2014.940675.Search in Google Scholar

Stanhope, Kimber L. 2016. Sugar consumption, metabolic disease and obesity: The state of the controversy. Critical Reviews in Clinical Laboratory Sciences 53(1). 52–67. https://doi.org/10.3109/10408363.2015.1084990.Search in Google Scholar

Thomas, Samantha L., Jim Hyde, Asunta Karunaratne, Dilinie Herbert & Paul A. Komesaroff. 2008. Being ‘fat’ in today’s world: A qualitative study of the lived experiences of people with obesity in Australia. Health Expectations 11. 321e330–330. https://doi.org/10.1111/j.1369-7625.2008.00490.x.Search in Google Scholar

Tsuya, Atsushi, Yuya Sugawara, Atsushi Tanaka & Hiroto Narimatsu. 2014. Do cancer patients tweet? Examining the Twitter use of cancer patients in Japan. Journal of Medical Internet Research 16(5). e137. https://doi.org/10.2196/jmir.3298.Search in Google Scholar

Woodhouse, Rosalind. 2008. Obesity in art – A brief overview. Obesity and Metabolism(Frontiers of Hormone Research) 36. 271–286. https://doi.org/10.1159/isbn.978-3-8055-8430-2.Search in Google Scholar

World Health Organization. 2010. Equity, social determinants and public health programmes. Geneva: WHO.Search in Google Scholar

World Health Organization. 2017. Las 10 principales causas de defunción [Top 10 causes of death] Available at: https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death.Search in Google Scholar

Received: 2024-08-23
Accepted: 2024-11-05
Published Online: 2024-12-13
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/lpp-2024-0031/html
Scroll to top button