Application of natural language processing for the recognition of obesity-related topics in the discourses of Argentine Twitter users
Abstract
The global burden of obesity has risen due to various factors, including sociocultural aspects. Social representations (SRs) of obesity could help to understand the problem. Nowadays, social networks activate new social interaction processes and enable the construction of SRs. Tweets can identify mind-sets as cultural reflections of the times. This study aimed to identify widely shared obesity topics on Twitter-Argentina using Natural Language Processing. First, 134,766 Spanish tweets about obesity were collected from August 2021 to July 2022. Next, a geolocation filter removed non-Argentinian messages, leaving 48,149 tweets. The body text was cleaned and prepared for analysis. K-means clustering model was applied and 21 clusters were identified after reaching theoretical saturation. Then, 10 tweets from each cluster were randomly selected to analyse word usage and identify cluster themes. Thus, the main themes were “Gender-related”, “Obesity and family”, “Hate speech and fatphobia”, “Body image, perceptions and feelings”, “Public health actions” and “Obesity as a health-disease process”. These aggregations allowed us to understand obesity as a sociocultural phenomenon, the Argentinian culture-specific discourses surrounding it, and their connections to health. We firmly believe that this valuable information will enlighten the planning of future social-political actions to address this health-disease process.
Funding source: Fondo para la Investigación Científica y Tecnológica
Award Identifier / Grant number: PICT-2020-A-03283
Award Identifier / Grant number: PIIDTA-IA RESOL-2024-61-E-UNC-SECYT#ACTIP
Award Identifier / Grant number: RESOL-2023-266-E-UNC-SECYT#ACTIP
Acknowledgements
The authors would like to thank the AUIP, the sponsoring institution of the Academic Mobility Scholarship Programme, which supported the international exchanges. We also thank Prof. Laura Alonso Alemany for her invaluable academic contributions.
-
Research funding: This work was supported by the Fondo para la Investigación Científica y Tecnológica (PICT-2020-A-03283) and Secretaria de Ciencia y Tecnología – Universidad Nacional de Córdoba (PIIDTA-IA RESOL-2024-61-E-UNC-SECYT#ACTIP, RESOL-2023-266-E-UNC-SECYT#ACTIP).
References
Aballay, Laura R., Aldo Eynard, María del Pilar Díaz, Alicia Navarro & Sonia E. Muñoz. 2013. Overweight and obesity: A review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutrition Reviews 71(3). 168–179. https://doi.org/10.1111/j.1753-4887.2012.00533.x.Search in Google Scholar
Aballay, Laura R., Julia Coquet Becaria, Graciela F. Scruzzi, Eugenia Haluszka, Carlos G. Franchini, Paula Carreño, Elias Raboy, María D. Román, Camila Niclis, Marcos Balangero, Natalia Altamirano, María G. Barbás & Laura López. 2022. Estudio de base poblacional de seroprevalencia y factores asociados a la infección por SARS-CoV-2 en Córdoba, Argentina [A population-based study on seroprevalence and factors associated with SARS-CoV-2 infection in Córdoba, Argentina]. Cadernos de saude publica 38(4). ES219821. https://doi.org/10.1590/0102-311XES219821.Search in Google Scholar
Baez, Andrew S., Lola R. Ortiz-Whittingham, Hannatu Tarfa, Foster Osei Baah, Keitra Thompson, Yvonne Baumer & Tiffany M. Powell-Wiley. 2023. Social determinants of health, health disparities, and adiposity. Progress in Cardiovascular Diseases 78. 17–26. https://doi.org/10.1016/j.pcad.2023.04.011.Search in Google Scholar
Bishop, Christopher M. 2006. Pattern Recognition and machine learning. New York, NY: Springer.Search in Google Scholar
Boon-Itt, Sakun & Yukolpat Skunkan. 2020. Public perception of the COVID-19 pandemic on Twitter: Sentiment analysis and topic modeling study. JMIR Public Health and Surveillance 6(4). e21978. https://doi.org/10.2196/21978.Search in Google Scholar
Braguinsky, Jorge. 2007. Concepto, definición y diagnóstico. En: Obesidad, saberes y conflictos, un tratado de obesidad. Argentina, Editorial Medica AWWE.Search in Google Scholar
Cockerham, William C. 2022. Theoretical approaches to research on the social determinants of obesity. American Journal of Preventive Medicine 63(Suppl 1). S8–S17. https://doi.org/10.1016/j.amepre.2022.01.030.Search in Google Scholar
Cohen, Jordana B. 2017. Hypertension in obesity and the impact of weight loss. Current Cardiology Reports 19(10). 98. https://doi.org/10.1007/s11886-017-0912-4.Search in Google Scholar
Coleman, John C. & Leo B. Hendry. 2003. Psicología de la adolescencia [Psychology of adolescence]. Madrid: Morata.Search in Google Scholar
De Girolami, Daniel H. 1999. Definición y medios diagnóstico [Definition and diagnostic means]. En: Braguinsky J. Obesidad [obesity] (2da edición p. 15–39). Buenos Aires; El Ateneo.Search in Google Scholar
Deek, Melanie R., Ivanka Prichard & Eva Kemps. 2023. The mother-daughter-sister triad: The role of female family members in predicting body image and eating behaviour in young women. Body Image 46. 336–346. https://doi.org/10.1016/j.bodyim.2023.07.001.Search in Google Scholar
DeJong, William. 1980. The stigma of obesity: The consequences of naive assumptions concerning the causes of physical deviance. Journal of Health and Social Behavior 21. 75–87. https://doi.org/10.2307/2136696.Search in Google Scholar
Drury, Christine A. A. & Margaret Louis. 2002. Exploring the association between body weight, stigma of obesity, and health care avoidance. Journal of the American Academy of Nurse Practitioners 14(12). 554e561–561. https://doi.org/10.1111/j.1745-7599.2002.tb00089.x.Search in Google Scholar
Escandón-Nagel, Neli, José F. Vargas, Ana C. Herrera & Ana M. Pérez. 2018. Body image on sex and nutritional status: Association with the construction of self and others. Revista Mexicana de Trastornos Alimentarios 10(1). 32–41. https://doi.org/10.22201/fesi.20071523e.2019.1.521.Search in Google Scholar
Faruque, Samir, Janice Tong, Vuk Lacmanovic, Christiana Agbonghae, Dulce M. Minaya & Krzysztof Czaja. 2019. The dose makes the poison: Sugar and obesity in the United States – A review. Polish Journal of Food and Nutrition Sciences 69(3). 219–233. https://doi.org/10.31883/pjfns/110735.Search in Google Scholar
Forth, Christopher E. 2015. Fat and fattening: Agency, materiality and animality in the history of corpulence. Body Politics: Zeitschrift für Körpergeschichte 3(5). 51–74.Search in Google Scholar
Friedman, Kelli E., Simona K. Reichmann, Philip R. Costanzo, Arnaldo Zelli, Jamile A. Ashmore & Gerard J. Musante. 2005. Weight stigmatization and ideological beliefs: Relation to psychological functioning in obese adults. Obesity Research 13. 907e916–916. https://doi.org/10.1038/oby.2005.105.Search in Google Scholar
Ginsberg, Jeremy, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski & Larry Brilliant. 2009. Detecting influenza epidemics using search engine query data. Nature 457(7232). 1012–1014. https://doi.org/10.1038/nature07634.Search in Google Scholar
González-Calderón, María J. & Jose I. Baile. 2013. Intervención psicológica en obesidad. Madrid: Pirámide.Search in Google Scholar
Hartigan, John A. 1975. Clustering algorithms. New York, NY, US: John Wiley y Sons, Inc.Search in Google Scholar
Hernández-Garduño, Eduardo. 2020. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obesity Research & Clinical Practice 14(4). 375–379. https://doi.org/10.1016/j.orcp.2020.06.001.Search in Google Scholar
Holland, Grace & Marika Tiggemann. 2016. A systematic review of the impact of the use of social networking sites on body image and disordered eating outcomes. Body Image 17. 100–110. https://doi.org/10.1016/j.bodyim.2016.02.008.Search in Google Scholar
Honnibal, Matthew & Ines Montani. 2017. SpaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. Sentometrics Research, In press.Search in Google Scholar
Ibrohim, Muhammad O. & Indra Budi. 2023. Hate speech and abusive language detection in Indonesian social media: Progress and challenges. Heliyon 9(8). e18647. https://doi.org/10.1016/j.heliyon.2023.e18647.Search in Google Scholar
Keery, Helene, Patricia van den Berg & Kevin J. Thompson. 2004. An evaluation of the Tripartite Influence Model of body dissatisfaction and eating disturbance with adolescent girls. Body Image 1(3). 237–251. https://doi.org/10.1016/j.bodyim.2004.03.001.Search in Google Scholar
Krueger, Richard A. & Mary Anne Casey. 2000. Focus groups: A practical guide for applied research, 3rd edn. Thousand Oaks, CA: Sage.Search in Google Scholar
Latner, Janet D., Wilson G. Terence, Mary L. Jackson & Albert J. Stunkard. 2009. Greater history of weight-related stigmatizing experience is associated with greater weight loss in obesity treatment. Journal of Health Psychology 14. 190e199.10.1177/1359105308100203Search in Google Scholar
Lovering, Meghan E., Rachel F. Rodgers, Jessica E. George & Debra L. Franko. 2018. Exploring the Tripartite Influence Model of body dissatisfaction in postpartum women. Body Image 24. 44–54. https://doi.org/10.1016/j.bodyim.2017.12.001.Search in Google Scholar
Lui, Chi-Wai, Zaimin Wang, Ning Wang, Gabriel Milinovich, Hang Ding, Kerrie Mengersen, Hilary Bambrick & Wenbiao Hu. 2021. A call for better understanding of social media in surveillance and management of noncommunicable diseases. Health Research Policy and Systems 19(1). 18. https://doi.org/10.1186/s12961-021-00683-4.Search in Google Scholar
Macionis, John. 1993. Sociology, 4th edn. New Jersey: Prentice Hall.Search in Google Scholar
Mancuso, Lucia, María B. Longhi, María G. Pérez, Andrea Majul, Erica Almeida & Lorena Carignani. 2021. Diversidad corporal, pesocentrismo y discriminación: la gordofobia como fenómeno discriminatorio [Body diversity, pesocentrism and discrimination: fatphobia as a discriminatory phenomenon]. Revista Inclusive 4. 12–16.Search in Google Scholar
Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado & Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems. 3111–3119.Search in Google Scholar
Morse, Janice. 1995. The significance of saturation. Qualitative Health Research 5(2). 147–149. https://doi.org/10.1177/104973239500500201.Search in Google Scholar
National Institute against discrimination, xenophobia and racism. 2019. National discrimination Map 2019. Second series of statistics on discrimination in Argentina. Buenos Aires: INADI.Search in Google Scholar
Panamerican Health Organization. 2012. Determinantes e inequidades en salud. Washington: Biblioteca Sede OPS.Search in Google Scholar
Panamerican Health Organization. 2016. La eSalud en la Región de las Américas: derribando las barreras a la implementación. Washington-DC Available at: https://iris.paho.org/xmlui/handle/123456789/31287.Search in Google Scholar
Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blonder, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeu, Mathieu Brucher, Mathieu Perrot & Édouard Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12. 2825–2830.Search in Google Scholar
Pérez, Juan M. & Franco M. Luque. 2019. Atalaya at SemEval 2019 task 5: Robust embeddings for tweet classification. In Proceedings of the 13th international Workshop on semantic evaluation, 64–69. Minneapolis, Minnesota, USA: Association for Computational Linguistics.10.18653/v1/S19-2008Search in Google Scholar
Popkin, Barry M., Shufa Du, William D. Green, Melinda A. Beck, Taghred Algaith, Cristopher H. Herbst, Reem F. Alsukait, Mohammed Alluhidan, Nahar Alazemi & Shekar Meera. 2020. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity 21(11). e13128. https://doi.org/10.1111/obr.13128.Search in Google Scholar
Pou, Sonia A., Julia M. Wirtz Baker & Laura R. Aballay. 2023. Epidemia de obesidad: evidencia actual, desafíos y direcciones futuras [Obesity epidemic: Current evidence, challenges and future directions]. Medicina 83(2). 283–289.Search in Google Scholar
Power, Michael L. & Jay Schulkin. 2008. Sex differences in fat storage, fat metabolism, and the health risks from obesity: Possible evolutionary origins. British Journal of Nutritio 99(5). 931–940. https://doi.org/10.1017/S0007114507853347.Search in Google Scholar
Raich, Rosa M. 2013. Imagen corporal: Conocer y valorar el propio cuerpo [Body image: Knowing and valuing one’s own body]. Madrid: Pirámide.Search in Google Scholar
Rodgers, Rachel, Henri Chabrol & Susan J. Paxton. 2011. An exploration of the tripartite influence model of body dissatisfaction and disordered eating among Australian and French college women. Body Image 8(3). 208–215. https://doi.org/10.1016/j.bodyim.2011.04.009.Search in Google Scholar
Rodríguez, Juan F. 2013. Alteraciones de la imagen corporal [Body image disturbances]. Madrid: Síntesis.Search in Google Scholar
Saguy, Abigail C. & Kevin W. Riley. 2005. Weighing both sides: Morality, mortality, and framing contests over obesity. Journal of Health Politics, Policy and Law 30. 869e921–923. https://doi.org/10.1215/03616878-30-5-869.Search in Google Scholar
Sanday, Julieta, Scappatura M. Luz & Guillermina Rutsztein. 2020. Impacto de la pandemia por COVID-19 en los hábitos alimentarios y la Imagen Corporal [Impact of the COVID-19 pandemic on eating habits and body image]. XII Congreso Internacional de Investigación y Práctica Profesional en Psicología. XXVII Jornadas de Investigación. XVI Encuentro de Investigadores en Psicología del MERCOSUR. II Encuentro de Investigación de Terapia Ocupacional. II Encuentro de Musicoterapia. Facultad de Psicología. Buenos Aires: Universidad de Buenos Aires.Search in Google Scholar
Silva, Leandro, Mainack Mondal, Denzil Correa, Fabricio Benevenuto & Ingmar Weber. 2016. Analyzing the targets of hate in online social media. Proceedings of the International AAAI Conference on Web and Social Media 10(1). 687–690. https://doi.org/10.1609/icwsm.v10i1.14811.Search in Google Scholar
Slevec, Julie & Marika Tiggemann. 2010. Attitudes toward cosmetic surgery in middle-aged women: Body image, aging anxiety, and the media. Psychology of Women Quarterly 34(1). 65–74. https://doi.org/10.1111/j.1471-6402.2009.01542.x.Search in Google Scholar
So, Jiyeon, Abby Prestin, Lyndon Lee, Yafei Wang, John Yen & Wen-Ying S. Chou. 2016. What do people like to “share” about obesity? A content analysis of frequent retweets about obesity on Twitter. Health Communication 31(2). 193–206. https://doi.org/10.1080/10410236.2014.940675.Search in Google Scholar
Stanhope, Kimber L. 2016. Sugar consumption, metabolic disease and obesity: The state of the controversy. Critical Reviews in Clinical Laboratory Sciences 53(1). 52–67. https://doi.org/10.3109/10408363.2015.1084990.Search in Google Scholar
Thomas, Samantha L., Jim Hyde, Asunta Karunaratne, Dilinie Herbert & Paul A. Komesaroff. 2008. Being ‘fat’ in today’s world: A qualitative study of the lived experiences of people with obesity in Australia. Health Expectations 11. 321e330–330. https://doi.org/10.1111/j.1369-7625.2008.00490.x.Search in Google Scholar
Tsuya, Atsushi, Yuya Sugawara, Atsushi Tanaka & Hiroto Narimatsu. 2014. Do cancer patients tweet? Examining the Twitter use of cancer patients in Japan. Journal of Medical Internet Research 16(5). e137. https://doi.org/10.2196/jmir.3298.Search in Google Scholar
Woodhouse, Rosalind. 2008. Obesity in art – A brief overview. Obesity and Metabolism(Frontiers of Hormone Research) 36. 271–286. https://doi.org/10.1159/isbn.978-3-8055-8430-2.Search in Google Scholar
World Health Organization. 2010. Equity, social determinants and public health programmes. Geneva: WHO.Search in Google Scholar
World Health Organization. 2017. Las 10 principales causas de defunción [Top 10 causes of death] Available at: https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Introduction to the Special Issue: Pragmatics, digital content and opinions
- Research Articles
- Discursive news values analysis: the case of Liz Truss’ representation in the British press
- The case of romantic relationships: analysis of the use of metaphorical frames with ‘traditional family’ and related terms in political Telegram posts in three countries and three languages
- Expressing anger on Mexican X/Twitter: the case of Uber customer complaints
- Expressing negative opinions through metaphor and simile in popular music reviews
- Slur reclamation, irony, and resilience
- What is the authentic internet register before & after the Russian invasion in Ukraine? Polish and Czech YouTube comments from 2021–2023
- Application of natural language processing for the recognition of obesity-related topics in the discourses of Argentine Twitter users
- Opinion events and stance types: advances in LLM performance with ChatGPT and Gemini
- Classifying offensive language in Arabic: a novel taxonomy and dataset
- Implicit offensive language taxonomy
Articles in the same Issue
- Frontmatter
- Editorial
- Introduction to the Special Issue: Pragmatics, digital content and opinions
- Research Articles
- Discursive news values analysis: the case of Liz Truss’ representation in the British press
- The case of romantic relationships: analysis of the use of metaphorical frames with ‘traditional family’ and related terms in political Telegram posts in three countries and three languages
- Expressing anger on Mexican X/Twitter: the case of Uber customer complaints
- Expressing negative opinions through metaphor and simile in popular music reviews
- Slur reclamation, irony, and resilience
- What is the authentic internet register before & after the Russian invasion in Ukraine? Polish and Czech YouTube comments from 2021–2023
- Application of natural language processing for the recognition of obesity-related topics in the discourses of Argentine Twitter users
- Opinion events and stance types: advances in LLM performance with ChatGPT and Gemini
- Classifying offensive language in Arabic: a novel taxonomy and dataset
- Implicit offensive language taxonomy