Startseite Analysis of SMART reactor core with uranium mononitride for prolonged fuel cycle using OpenMC
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of SMART reactor core with uranium mononitride for prolonged fuel cycle using OpenMC

  • Yahya A. Al-Zahrani , Khurram Mehboob ORCID logo EMAIL logo , Tariq F. Alshahrani , Fouad A. Abolaban und Hannan Younis
Veröffentlicht/Copyright: 14. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The neutronics performance and safety characteristics of Uranium mononitride (UN) fuel for System-Integrated Modular Advanced Reactor (SMART) has been investigated to discern the potential for non-proliferation, waste, and accident tolerance benefits of UN fuel. The neutronic evaluation of UN fuel for SMART reactor has been carried out under normal operation using OpenMC and compared with Uranium dioxide (UO2) in terms of fuel cycle length, reactivity coefficients, Fuel depletion (burnup), thermal flux, and fission product activity. The power peaking factor (PPF) has been compared at the beginning of the fuel cycle (BOC), mid of the fuel cycle (MOC), and at the end of the fuel cycle (EOC). Results indicate that the UN fuel can be operated beyond the designed fuel cycle length of the SMART reactor, which induces the positive reactivity at the end of the fuel cycle of about 4625 pcm. However, the UO2 showed negative reactivity after three years. The total fission product activity at the end of the fuel cycle (3.5 years) for UO2 and UN has been founded 1.003 × 1020 Bq and 1.023 × 1020 Bq, respectively.


Corresponding author: Khurram Mehboob, Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University (KAU), P. O. Box 80204, Jeddah 21589, Saudi Arabia; and Department of Nuclear Engineering, K.A. CARE Energy Research and Innovation Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia, E-mail:

Funding source: King Abdulaziz University http://dx.doi.org/10.13039/501100004054

Award Identifier / Grant number: RG-88-135-42

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Authors acknowledge the support provided by King Abdullah City for Atomic and Renewable Energy (K.A. CARE) under K.A. CARE-King Abdulaziz University Collaboration Program. The authors are also thankful to Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. RG-88-135-42. The authors, therefore, gratefully acknowledge DSR technical and financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adachi, J., Kurosaki, K., Uno, M., Takano, M., Akabori, M., and Minato, K. (2009). Mechanical properties at sub-micro scale and macroscale of polycrystalline uranium mononitride. J. Nucl. Mater. 384: 6–11, https://doi.org/10.1016/j.jnucmat.2008.09.019.Suche in Google Scholar

Al-Zahrani, Y.A., Mehboob, K., Mohammad, D. Alhawsawi, A., and Abolaban, F.A. (2021). Neutronic performance of fully ceramic microencapsulated of uranium oxycarbide and uranium nitride composite fuel in SMR. Ann. Nucl. Energy 155: 108152, https://doi.org/10.1016/j.anucene.2021.108152.Suche in Google Scholar

Armstrong, W.M., Causey, A.R., and Sturrock, W.R. (1966). Creep of single-crystal UO2. J. Nucl. Mater. 19: 42–49, https://doi.org/10.1016/0022-3115(66)90127-9.Suche in Google Scholar

Byron, J.F. (1968). Yield and flow of polycrystalline uranium dioxide. J. Nucl. Mater. 27: 48–53, https://doi.org/10.1016/0022-3115(68)90006-8.Suche in Google Scholar

Canon, R.F., Roberts, J.T.A., and Beals, R.J. (1971). Deformation of UO2 at high temperatures. J. Am. Ceram. Soc. 54: 105–112, https://doi.org/10.1111/j.1151-2916.1971.tb12230.x.Suche in Google Scholar

Carvajal-Nunez, U., Elbakhshwan, M.S., Mara, N.A., White, J.T., and Nelson, A.T. (2018). Mechanical properties of uranium silicides by nanoindentation and finite element modeling. J. Miner. Met. Mater. Soc. 70: 203–208, https://doi.org/10.1007/s11837-017-2667-1.Suche in Google Scholar

Carvajal-Nunez, U., Saleh, T.A., White, J.T., Maiorov, B., and Nelson, A.T. (2017). Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy. J. Nucl. Mater. 498: 438–444, https://doi.org/10.1016/j.jnucmat.2017.11.008.Suche in Google Scholar

Chang, M.H.E.E. and Kim, S. (1988). Approach for smart application to desalination and power generation, (IAEA-TECDOC-1056). International Atomic Energy Agency (IAEA), Austria, Viannna.Suche in Google Scholar

Dherbey, F., Louchet, F., Mocellin, A., and Leclercq, S. (2002). Elevated temperature creep of polycrystalline uranium dioxide: from microscopic mechanisms to macroscopic behavior. Acta Mater. 50: 1495–1505, https://doi.org/10.1016/S1359-6454(02)00007-1.Suche in Google Scholar

Dobuchi, N., Takeda, S., and Kitada, T. (2016). Study on the relation between Doppler reactivity coefficient and resonance integrals of Thorium and Uranium in PWR fuels. Ann. Nucl. Energy 90: 191–194, https://doi.org/10.1016/j.anucene.2015.11.018.Suche in Google Scholar

Ekberg, C., Costa, D.R., Hedberg, M., Jolkkonen, M., Zinkle, S.J., Terrani, K.A., Gehin, J.C., Ott, L.J., and Snead, L.L. (2013). Accident tolerant fuels for LWRs: a perspective. J. Nucl. Mater. 448: 374–379, https://doi.org/10.1016/j.jnucmat.2013.12.005.Suche in Google Scholar

Evans, A.G. and Davidge, R.W. (1969). The strength and fracture of stoichiometric polycrystalline UO2. J. Nucl. Mater. 33: 249–260, https://doi.org/10.1111/j.1151-2916.1972.tb11233.x.Suche in Google Scholar

Evans, P.E. and Davies, T.J. (1963). Uranium nitrides. J. Nucl. Mater. 10: 43–55, https://doi.org/10.1016/0022-3115(63)90115-6.Suche in Google Scholar

Frazer, D. and Hosemann, P. (2019). Plasticity of UO2 quantified and understood via elevated temperature micro compression testing. J. Nucl. Mater. 525: 140–144, https://doi.org/10.1016/j.jnucmat.2019.07.022.Suche in Google Scholar

Frazer, D., Shaffer, B., Roney, K., Lim, H., Gong, B., Peralta, P., and Hosemann, P. (2017a). Small-scale mechanical testing of UO2. Trans. Am. Nucl. Soc. 116: 485–487.Suche in Google Scholar

Frazer, D., Shaffer, B., Roney, K., Lim, H., Gong, B., Peralta, P., and Hosemann, P. (2017b). Elevated temperature nanoindentation testing of UO2. Trans. Am. Nucl. Soc. 117: 623–624.Suche in Google Scholar

Gong, B., Frazer, D., Yao, T., Hosemann, P., Tonks, M., and Lian, J. (2019). Nano and micro-indentation testing of sintered UO2 fuel pellets with controlled microstructure and stoichiometry. J. Nucl. Mater. 516: 169–177, https://doi.org/10.1016/j.jnucmat.2019.01.021.Suche in Google Scholar

Gong, B., Yao, T., Lei, P., Harp, J., Nelson, A.T., and Lian, J. (2020). Spark plasma sintering (SPS) densified U3Si2 pellets: microstructure control and enhanced mechanical and oxidation properties. J. Alloys Compd. 825: 154022, https://doi.org/10.1016/j.jallcom.2020.154022.Suche in Google Scholar

Hayes, S.L., Thomas, J.K., and Peddicord, K.L. (1990). Material property correlations for uranium mononitride: II. Mechanical properties. J. Nucl. Mater. 171: 271–288, https://doi.org/10.1016/0022-3115(90)90375-W.Suche in Google Scholar

Hwang, D.H. and Hong, S.G. (2021). Transition cycle analysis of light water-cooled SMR core loaded with MOX (TRU) and FCM (TRU) fueled PWR assemblies. Nucl. Eng. Des. 375: 111103, https://doi.org/10.1016/j.nucengdes.2021.111103.Suche in Google Scholar

IAEA (2018). Deployment indicators for small modular reactors: methodology, analysis of key factors and case studies, IAEA-TECDOC-1854. International Atomic Energy Agency (IAEA), International Centre, PO Box 100 A-1400 Vienna, Austria.Suche in Google Scholar

IAEA (2020). Small modular reactors (SMRs). Vienna, Austria: International Atomic Energy Agency (IAEA), Available at: <http://www.iaea.org/NuclearPower/SMR/>.Suche in Google Scholar

Iltis, X., Gey, N., Cagna, C., Hazotte, A., and Sornay, P. (2015). Microstructural evolution of uranium dioxide following compression creep tests: an EBSD and image analysis study. J. Nucl. Mater. 456: 426–435, https://doi.org/10.1016/j.jnucmat.2014.10.005.Suche in Google Scholar

Iltis, X., Saada, M.B., Mansour, H., Gey, N., Hazotte, A., and Maloufi, N. (2016). A new characterization approach for studying relationships between microstructure and creep damage mechanisms of uranium dioxide. J. Nucl. Mater. 474: 1–7.10.1016/j.jnucmat.2016.02.027Suche in Google Scholar

KAERI (2002). Basic design report of SMART, KAERI/TR-2142/2002. Taejon, Republic of Korea: Korea Atomic Energy Research Institute.Suche in Google Scholar

Kardoulaki, E., Frazer, D.M., White, J.T., Carvajal, U., Nelson, A.T., Byler, D.D., Saleh, T.A., Gong, B., Yao, T., Lian, J., et al.. (2020a). Fabrication and thermophysical properties of UO2-UB2 and UO2-UB4 composites sintered via spark plasma sintering. J. Nucl. Mater. 544: 152690, https://doi.org/10.1016/j.jnucmat.2019.05.059.Suche in Google Scholar

Kardoulaki, E., White, J.T., Byler, D.D., Frazer, D.M., Shi prasad, A.P., Saleh, T.A., Gong, B., Yao, T., Lian, J., and McClellan, K.J. (2020b). Thermophysical and mechanical property assessment of UB2 and UB4 sintered via spark plasma sintering. 818: 153216, https://doi.org/10.1016/j.jallcom.2019.153216.Suche in Google Scholar

Kazimi, M.S., Hejzlar, P. (2006). High-performance fuel design for next generation PWRs, Final Report, MIT-NFC-PR-082. Massachusetts Institute of Technology (MIT), Department of Nuclear Engineering, Massachusetts Ave, Cambridge, MA 02139, USA.Suche in Google Scholar

Keller, R.J., Mitchell, T.E., and Heuer, A.H. (1998). Plastic deformation in nonstoichiometric UO2+x single crystals—1. Deformation at low temperatures. Acta Metall. 36: 1061–1071, https://doi.org/10.1016/0001-6160(88)90161-7.Suche in Google Scholar

Kim, S., Kim, K.K., Yeo, J.W., Chang, M.H., and Zee, S.Q. (2003). Design verification program of SMART, Genes4/Anp2003, paper 1047, pp. 15–19. Kyoto, Japan.Suche in Google Scholar

Kirillov (2006). Thermophysical properties of materials for nuclear engineering. In: Kirillov, L. (Ed.), Tutorial for students of specialty «Nuclear Power Plants», Second Revised and Augmented Edition. – Obninsk, UDK, Russia, 621.039.53/54 (031).Suche in Google Scholar

Lunev, A.V., Kuksin, A.Y., and Starikov, S.V. (2017). Glide mobility of the ½[110](001) edge dislocation in UO2 from molecular dynamics simulation. Int. J. Plast. 89: 85–95, https://doi.org/10.1016/j.ijplas.2016.11.004.Suche in Google Scholar

Matterson, K.J. and Jones, H. (1961). A study of the tetraborides of uranium and thorium. Trans. J. Br. Ceram. Soc. 60: 475–493.Suche in Google Scholar

Matthews, R.B. (1993). Irradiation performance of nitride fuels. Specialist conference on space nuclear power and propulsion technologies: materials and fuels, Moscow (Russian Federation), 21–24 Sep 1993.Suche in Google Scholar

Mehboob, K. and Aljohani, M.S. (2018). Derivation of radiological source term of Korean design system-integrated modular advanced reactor (SMART). Ann. Nucl. Energy 119: 148–161, https://doi.org/10.1016/j.anucene.2018.04.044.Suche in Google Scholar

Mehboob, K., Al-Zahrani, Y.A., and Mohamad, D. (2021). Simulation of activated corrosion product (ACP) activity in Korean design system-integrated modular advanced reactor (SMART) under steady-state flow and linearly accelerated corrosion. Prog. Nucl. Energy 134: 103667, https://doi.org/10.1016/j.pnucene.2021.103667.Suche in Google Scholar

Metzger, K.E., Knight, T.W., Roberts, E., and Huang, X. (2017). Determination of mechanical behavior of U3Si2 nuclear fuel by micro indentation method. Prog. Nucl. Energy 99: 147–154, https://doi.org/10.1016/j.pnucene.2017.05.007.Suche in Google Scholar

Mohamad, A., Ohishi, Y., Muta, H., Kurosaki, K., and Yamanaka, S. (2018). Thermal and mechanical properties of polycrystalline U3Si2 synthesized by spark plasma sintering. J. Nucl. Sci. Technol. 55: 1144–1150, https://doi.org/10.1080/00223131.2018.1480431.Suche in Google Scholar

Portelette, L., Amodeo, J., Madec, R., Soulacroix, J., Helfer, T., and Michel, B. (2018). Crystal viscoplastic modeling of UO2 single crystal. J. Nucl. Mater. 510: 635–643, https://doi.org/10.1016/j.jnucmat.2018.06.035.Suche in Google Scholar

Powers, J.J., Lee, W.J., Venneri, F., Snead, L.L., Jo, C.K., Hwang, D.H., Chun, J.H., Kim, Y.M., and Terrani, K.A. (2013). Fully ceramic microencapsulated (FCM) replacement fuel for LWRs, ORNL/TM-2013/173. KAERI/TR-5136/2013. Oak Ridge, Tennessee 37831-6283: Oak Ridge National Laboratory.10.2172/1087039Suche in Google Scholar

Radford, K.C. and Terwilliger, G.R. (1975). Compressive deformation of polycrystalline UO2. J. Am. Ceram. Soc. 58: 274–278.10.1111/j.1151-2916.1975.tb11474.xSuche in Google Scholar

Richardson, K. (2016). Advanced fuels campaign 2016 accomplishments, fuel cycle research and development, INL/EXT-16-40127, FCRD-FUEL-2016-000116, Idaho National Laboratory, Idaho Falls, USA.10.2172/1395839Suche in Google Scholar

Romano, P.K., Horelik, N.E., Herman, B.R., Nelson, A.G., Forget, B., and Smith, K. (2015). ‘OpenMC: a state-of-the-art Monte Carlo code for research and development. Ann. Energy 82: 90–97, https://doi.org/10.1016/j.anucene.2014.07.048.Suche in Google Scholar

Routbort, J.L. and Singh, R.N. (1975). Elastic, diffusional, and mechanical properties of carbide and nitride nuclear fuels – a review. J. Nucl. Mater. 58: 78–114.10.1016/0022-3115(75)90169-5Suche in Google Scholar

Ruano, O.A., Wolfenstine, J., Wadsworth, J., and Sherby, O.D. (1991). Harper-Dorn and power law creep in Uranium dioxide. Acta Metall. Mater. 39: 661–668, https://doi.org/10.1016/0956-7151(91)90134-M.Suche in Google Scholar

Salvo, M., Sercombe, J., Menard, J.C., Julien, J., Helfer, T., and Desoyer, T. (2015). Experimental characterization and modeling of UO2 behavior at high temperature and high strain rates. J. Nucl. Mater. 456: 54–67.10.1016/j.jnucmat.2014.09.024Suche in Google Scholar

Seltzer, M.S., Clauer, A.H., and Wilcox, B.A. (1972a). The influence of stoichiometry on compression creep of uranium dioxide single crystals. J. Nucl. Mater. 44: 43–56.10.1016/0022-3115(72)90127-4Suche in Google Scholar

Seltzer, M.S., Clauer, A.H., and Wilcox, B.A. (1972b). The influence of stoichiometry on compression creep of polycrystalline UO2 + x. J. Nucl. Mater. 44: 331–336.10.1016/0022-3115(72)90044-XSuche in Google Scholar

Terrani, K.A., Balooch, M., Burns, J.R., and Smith, Q.B. (2018). Young’s modulus evaluation of high burnup structure in U2 with nanometer resolution. J. Nucl. Mater. 508: 33–39, https://doi.org/10.1016/j.jnucmat.2018.04.004.Suche in Google Scholar

Tokar, M., Nutt, A.W., and Leary, J.A. (2018). Mechanical properties of carbide and nitride reactor fuels. J. Nucl. Mater. 508: 33–39, https://doi.org/10.1016/j.jnucmat.2018.04.004.Suche in Google Scholar

Tyler, S.E. (2006). Advanced design concepts for PWR and BWR high-performance annular fuel assemblies, M.Sc. thesis. Massachusetts, Institute of Technology.Suche in Google Scholar

Varshney, D. and Shtiya, S. (2013). Pressure and temperature dependent elastic, mechanical and thermodynamical properties of nuclear fuel: UO2 and UN2. J. Nucl. Mater. 440: 344–365, https://doi.org/10.1016/j.jnucmat.2013.05.056.Suche in Google Scholar

Wang, T., Qiu, N., Wen, X., Tian, Y., He, J., Luo, K., Zha, X., Zhou, Y., Huang, Q., Lang, J., et al.. (2016). First-principles investigations on the electronic structures of U3Si2. J. Nucl. Mater. 469: 194–199, https://doi.org/10.1016/j.jnucmat.2015.11.060.Suche in Google Scholar

Youinou, G.J. and Sen, R.S. (2014). Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis. Nucl. Technol. 188: 123–138, https://doi.org/10.13182/NT14-22.Suche in Google Scholar

Zakova, J. and Wallenius, J. (2012). Fuel residence time in BWRs with nitride fuels. Ann. Nucl. Energy 47: 82–191, https://doi.org/10.1016/j.anucene.2012.03.033.Suche in Google Scholar

Zhao, H., Zhu, D., Chaudri, K.S., Qiu, S., Tian, W., and Su, G. (2014). Preliminary transient thermal-hydraulic analysis for new coated UN and UC fuel options in SCWR. Prog. Nucl. Energy 71: 152–159, https://doi.org/10.1016/j.pnucene.2013.11.008.Suche in Google Scholar

Received: 2021-06-02
Published Online: 2022-02-14
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/kern-2021-1000/html
Button zum nach oben scrollen