Startseite Ludometrics: luck, and how to measure it
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ludometrics: luck, and how to measure it

  • Daniel E. Gilbert ORCID logo EMAIL logo und Martin T. Wells
Veröffentlicht/Copyright: 1. Juni 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Game theory is the study of tractable games which may be used to model more complex systems. Board games, video games and sports, however, are intractable by design, so “ludological” theories about these games as complex phenomena should be grounded in empiricism. A first “ludometric” concern is the empirical measurement of the amount of luck in various games. We argue against a narrow view of luck which includes only factors outside any player’s control, and advocate for a holistic definition of luck as complementary to the variation in effective skill within a population of players. We introduce two metrics for luck in a game for a given population – one information theoretical, and one Bayesian, and discuss the estimation of these metrics using sparse, high-dimensional regression techniques. Finally, we apply these techniques to compare the amount of luck between various professional sports, between Chess and Go, and between two hobby board games: Race for the Galaxy and Seasons.

Award Identifier / Grant number: U19 AI111143

Funding statement: National Institutes of Health, Funder Id: http://dx.doi.org/10.13039/100000002, Grant Number: U19 AI111143. Division of Mathematical Sciences, Funder Id: http://dx.doi.org/10.13039/100000121, Grant Number: 1611893.

A Newton-Raphson updates for regularized skill estimation

For Algorithm 18, we have

lλ(o;s,t)=i=1nlogP(Oi=oi)λ||s||22=i=1nliλ||s||22,

where

li={log(1Φ(txis2))if oi=1log(Φ(txis2)Φ(txis2))if oi=0log(Φ(txis2))if oi=1.

The Newton-Raphson algorithm for optimizing this loss function is:

[st]j+1=[st]j(2(lλ(o;s,t)))1(lλ(o;s,t))

where the above gradient and Hessian are given by

(lλ(o;s,t))=i=1nioλs2(lλ(o;s,t))=i=1n(io)2λ𝕀A

where

i1=S1(ηi1)[xi1](i1)2=(ηi1S1(ηi1))S1(ηi1)[xi1][xi1]i1=S2(ηi2)[xi1](i1)2=(ηi2+S2(ηi2))S2(ηi2)[xi1][xi1]i0=[(ϕ(ηi1)ϕ(ηi2)Φ(ηi1)Φ(ηi2))xiϕ(ηi1)+ϕ(ηi2)Φ(ηi1)Φ(ηi2)](i0)2=[Φ(ηi1)Φ(ηi2)]2[(1)(2)(2)(3)]

where the matrix entries are

(1)=([ηi1ϕ(ηi1)ηi2ϕ(ηi2)][Φ(ηi1)Φ(ηi2)][ϕ(ηi1)ϕ(ηi2)]2)xixi(2)=([ηi1ϕ(ηi1)+ηi2ϕ(ηi2)][Φ(ηi1)Φ(ηi2)]+[ϕ2(ηi1)ϕ2(ηi2)])xi(3)=([ηi1ϕ(ηi1)ηi2ϕ(ηi2)][Φ(ηi1)Φ(ηi2)][ϕ(ηi1)+ϕ(ηi2)]2)

and

ηi1=txis2ηi2=txis2S1(η)=ϕ(η)1Φ(η)S2(η)=ϕ(η)Φ(η).

B Conditional distributions for gibbs sampling

Using the distributional assumptions for Method 2 in Section 3.2.2, the full conditional distributions are as follows. We can sample the latent performances y and the skill levels s as blocks:

yis,tindN(sa1isa2i,2)1aiyibi for i1,,n,

where

ai,bi={t,if oi=1t,tif oi=0,totherwisesyNA((xx+2σs2)1xy,(xx+2σs2)1),

and

σs2sΓ1(aσ+A2,bσ+||s||222)

and we collapse the chain by sampling p directly conditional on o. Let |o0| be the number of ties in the data set. Then pobeta(ap+|o0|,bp+n|o0|) and t=2(1+σs2)Φ1(1+p2).

References

Agresti A. 2003. Categorical Data Analysis, volume 482. New York: John Wiley & Sons.10.1002/0471249688Suche in Google Scholar

Blackwell D. and M. A. Girshick. 1954. Theory of Games and Statistical Decisions. New York: John Wiley & Sons.Suche in Google Scholar

Bradley R. A. and M. E. Terry. 1952. “Rank Analysis of Incomplete Block Designs: I. the Method of Paired Comparisons.” Biometrika 39(3/4):324–345.10.1093/biomet/39.3-4.324Suche in Google Scholar

Burridge J. 1981. “A Note on Maximum Likelihood Estimation for Regression Models Using Grouped Data.” Journal of the Royal Statistical Society. Series B (Methodological) 41–45.10.1111/j.2517-6161.1981.tb01146.xSuche in Google Scholar

Carlisle R. P. 2009. Encyclopedia of Play in Today’s Society. Thousand Oaks, CA: Sage Publications.10.4135/9781412971935Suche in Google Scholar

Christensen R. H. B. 2015. Cumulative link models for ordinal regression with the r package ordinal. https://cran.r-project.org/web/packages/ordinal/vignettes/clm_article.pdf.Suche in Google Scholar

Christensen R. H. B. and Brockhoff P. B. 2013. “Analysis of Sensory Ratings Data with Cumulative Link Models.” Journal de la Société Française de Statistique 154(3):58–79.Suche in Google Scholar

Diebolt J. and Ip E. H. S. 1996. “Stochastic EM: Method and Application.” Pp. 259–273. In Markov Chain Monte Carlo in Practice. New York: Springer.Suche in Google Scholar

Elias G. S., R. Garfield, and K. R. Gutschera. 2012. Characteristics of Games. Cambridge, MA: The MIT Press.Suche in Google Scholar

Fisher L. 2008. Rock, Paper, Scissors: Game Theory in Everyday Life. Basic Books (AZ).Suche in Google Scholar

Greene W. H. and D. A. Hensher. 2010. Modeling Ordered Choices: A Primer. Cambridge, United Kingdom: Cambridge University Press.10.1017/CBO9780511845062Suche in Google Scholar

Gumbel E. J. 1954. “Statistical Theory of Extreme Values and Some Practical Applications.” NBS Applied Mathematics Series 33.Suche in Google Scholar

Kaggle.com. 2018. Chess ratings – elo versus the rest of the world. https://www.kaggle.com/c/chess. Accessed: 2018-07-01.Suche in Google Scholar

Lange K. 2004. Optimization. New York: Springer.10.1007/978-1-4757-4182-7Suche in Google Scholar

Mauboussin M. J. 2012. The Success Equation: Untangling Skill and Luck in Business, Sports, and Investing. Harvard Business Press.10.2469/cp.v30.n3.1Suche in Google Scholar

Rubinstein A. 1991. “Comments on the Interpretation of Game Theory.” Econometrica: Journal of the Econometric Society 59:909–924.10.2307/2938166Suche in Google Scholar

sports-reference.com. 2018. https://www.sports-reference.com. Accessed: 2018-07-01.Suche in Google Scholar

yenw. 2018. Computer go dataset. https://github.com/yenw/computer-go-dataset. Accessed: 2018-07-01.Suche in Google Scholar

Published Online: 2019-06-01
Published in Print: 2019-08-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jqas-2018-0103/html?lang=de
Button zum nach oben scrollen