Home All-Optical Switching Device Using Plasmonic Mach-Zehnder Interferometer Structure
Article
Licensed
Unlicensed Requires Authentication

All-Optical Switching Device Using Plasmonic Mach-Zehnder Interferometer Structure

  • Lokendra Singh , Santosh Kumar EMAIL logo and Brajesh Kumar Kaushik
Published/Copyright: January 30, 2019
Become an author with De Gruyter Brill

Abstract

The basic logic gates play a key role in performing the mathematical computation. The plasmonics has the uniqueness of confining surface plasmons beyond the diffraction limit. Plasmonic-based Mach-Zehnder interferometer with an extinction ratio of 26 dB is proposed to design the structure of all-optical XOR and XNOR logic gate. A theoretical analysis of proposed gate is carried out using finite-difference-time-domain method and MATLAB simulation results.

Funding statement: Authors would like to acknowledge to Science and Engineering Research Board, Government of India for Teachers Associateship for Research Excellence (TARE) grant (TAR/2018/000051).

References

1. Gibbs HM. Optical bistability: controlling light with light. New York: Academic; 1985.10.1016/B978-0-12-281940-7.50010-XSearch in Google Scholar

2. Wurtz GA, Pollard R, Zayats AV. Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phy Rev Lett. 2006;97:057402.10.1103/PhysRevLett.97.057402Search in Google Scholar PubMed

3. Min C, Wang P, Jiao X, Deng Y, Ming H. Beam manipulating by metallic nano-optic lens containing nonlinear media. Opt Express. 2007;15:12368.10.1364/OE.15.009541Search in Google Scholar PubMed

4. Shen Y, Wang GP. Optical bistability in metal gap waveguide nanocavities. Opt Express. 2008;16:8421.10.1364/OE.16.008421Search in Google Scholar PubMed

5. Tai CY, Chang SH, Chiu TC. Significant enhancement of broadband optical limiting behavior using off-resonant sub-wavelength coupled plasmonic waves. Opt Express. 2008;16:14979.10.1364/OE.16.014979Search in Google Scholar PubMed

6. Moloney JV, Stich JE, Stegeman GI. Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media. Appl Phys Lett. 1986;48:826.10.1063/1.96680Search in Google Scholar

7. Moloney JV, Stich JE, Stegeman GI. Numerical evidence for non-stationary, non-linear, slab-guided. Opt Lett. 1986;11:315.10.1364/OL.11.000315Search in Google Scholar PubMed

8. Huang JH, Chang R. Nonlocal and nonlinear effects on the dispersion relation for surface plasmon at a metal-Kerr medium interface. J Opt. 2010;12:045003.10.1088/2040-8978/12/4/045003Search in Google Scholar

9. Salguiro JR, Kivshar YS. Nonlinear plasmonic directional couplers. Appl Phys Lett. 2010;97:081106.10.1063/1.3482939Search in Google Scholar

10. Kan’an AM, Likamwa P. Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer. J Opt Soc Am B. 1997;14:3217.10.1364/JOSAB.14.003217Search in Google Scholar

11. Pramono YH, Endarko. Nonlinear waveguides for optical logic and computation. J Nonlinear Opt Phys Mater. 2001;10:209.10.1142/S0218863501000553Search in Google Scholar

12. Kumar S, Bisht A, Singh G, Sharma S, Amphawan A. Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach-Zehnder interferometers. Appl Opt. 2015;54:8479.10.1364/AO.54.008479Search in Google Scholar PubMed

13. D. Gayen, Chattopadhyay T. Ultrafast all-optical half adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. J Lightwave Technol. 2012;30:3387.10.1109/JLT.2012.2215579Search in Google Scholar

14. Tsiokos D, Kehayas E, Vyrsokinos K, Houbavlis T, Stampoulidis L, Kanellos GT, et al. 10-Gb/s all-optical half-adder with interferometric SOA gates. IEEE Photonics Technol Lett. 2004;16:284–6.10.1109/LPT.2003.819394Search in Google Scholar

15. Kotiyal S, Thapliyal H, Ranganathan N. Mach-Zehnder interferometer based design of all optical reversible binary adder. Proceedings of the Conference on Design, Automation and Test in Europe. EDA Consortium, 2012.10.1109/DATE.2012.6176564Search in Google Scholar

16. Roy JN. Mach-Zehnder interferometer-based tree architecture for all-optical logic and arithmetic operations. Opt-Int J Light Electr Opt. 2009;120:318.10.1016/j.ijleo.2007.09.004Search in Google Scholar

17. Bader MA, Marowsky G, Bahtiar A, Koynov K, Bubeck C, Tillmann H, et al. Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching. J Opt Soc Am B. 2002;19:2250.10.1364/JOSAB.19.002250Search in Google Scholar

18. Pramono YH, Endarko. Nonlinear waveguides for optical logic and computation. J Nonlinear Opt Phys Mater. 2001;10:209.10.1142/S0218863501000553Search in Google Scholar

19. Kumar S, Singh L, Chen NK. Design of all optical universal gates using plasmonic based Mach-Zehnder interferometer for WDM applications. Plasmonics. 2018;13:1277–86.10.1007/s11468-017-0631-0Search in Google Scholar

20. Singh L, Bedi A, Kumar S. Modeling of odd and even parity generator using metal–insulator–metal plasmonic waveguide. Photon Sens. 2017;7:182–92.10.1007/s13320-017-0365-9Search in Google Scholar

21. Su W, Geng Z. Terahertz all-optical logic gates based on a graphene nanoribbon rectangular ring resonator. IEEE Photon J. 2018;10:1–8.10.1109/JPHOT.2018.2874507Search in Google Scholar

22. Aguiar AF, Neves DMC, Silva JBR. All-optical logic gates devices based on SPP coupling between graphene sheets. J Microw Optoelectron Electromagn. 2018;17:2174.10.1590/2179-10742018v17i21186Search in Google Scholar

23. Kumar S, Singh L, Raghuwanshi SK, Chen N-K. Design of full adder and subtractor circuits using plasmonic metal-insulator-metal waveguides. Plasmonics. 2016;11:1–11.10.1007/s11468-016-0350-ySearch in Google Scholar

24. Pereda JA, Vegas A, Prieto A. An improved compact 2D full-wave FDTD method for general guided wave structures microwave. Opt Tech Lett. 2003;38:331.10.1002/mop.11052Search in Google Scholar

25. Nozhat N, Alikomak H, Khodadadi M. All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt Commun. 2017;392:208–13.10.1016/j.optcom.2017.02.007Search in Google Scholar

Received: 2018-11-30
Accepted: 2019-01-15
Published Online: 2019-01-30
Published in Print: 2022-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Performance Investigate and Analysis of 96 × 10 Gbps DWDM System Using Suitable Rating from Optical Amplifiers
  4. Devices
  5. Design and Analysis of 3-Input NAND/NOR/XNOR Gate Based on 2D Photonic Crystals
  6. All-Optical Switching Device Using Plasmonic Mach-Zehnder Interferometer Structure
  7. Fibers
  8. Theoretical Assessment of a Porous Core Photonic Crystal Fiber for Terahertz Wave Propagation
  9. Networks
  10. Method and Algorithm for Topology Automatic Discovery in Complicated Passive Optical Network Architecture
  11. The Engagement of Hybrid Ultra High Space Division Multiplexing with Maximum Time Division Multiplexing Techniques for High-Speed Single-Mode Fiber Cable Systems
  12. Hybrid Algorithm Based Effective Light Trail Creation in an Optical Networks
  13. Adaptive Scheduling Mechanism with Variable Bit Rate Traffic in EPON
  14. A Novel Implementation of TCP Vegas by UsingA Fuzzy-Threshold Base Algorithm to Improve Performance of Optical Networks
  15. Improving Performance of Optical Networks by a Probable Approach
  16. Systems
  17. UltraHigh Bit-Rate Hybrid DWDM Optical System Design Using DP-QPSK Modulation
  18. Performance Limits of FSO Based SAC-OCDMA System Under Weather Conditions
  19. Performance Appraisal of Sigma Delta Modulated Radio over Fiber System
  20. Behavior study of EDEU optical code for FE-OCDMA system
  21. Performances enhancement of underwater wireless optical communications (UWOC) using pulse position modulation
  22. Theory
  23. Design and Simulation of OFDM for BPSK, QPSK and QAM with Peak Power Reduction Using Clipping Technique
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2018-0215/html
Scroll to top button