Abstract
A porous core photonic crystal fiber (PCF) for transmitting terahertz waves is reported and characterized using finite element method. It is shown that by enveloping an octagonal core consisting of only circular air holes in a hexagonal cladding, it is possible to attain low effective material loss that is 73.8% lower than the bulk material absorption loss at 1.0 THz operating frequency. Moreover, a low confinement loss of 7.53×10–5 cm−1 and dispersion profile of 1.0823±0.06 ps/THz/cm within 0.7–1 THz are obtained using carefully selected geometrical design parameters. Other guiding properties such as single-mode operation, bending loss, and effective area are also investigated. The structural design of this porous core PCF is comparatively simple since it contains noncomplex lattices and circular shaped air holes; and therefore, may be implemented using existing fabrication techniques. Due to its auspicious guiding properties, the proposed fiber may be used in single mode terahertz imaging and other short distance terahertz applications.
References
1. Islam MS, Sultana J, Dinovitser A, Faisal M, Islam MR, Ng BW-H. et al. Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl Opt. [Internet]. 2018;57:666.Available at: https://www.osapublishing.org/abstract.cfm?URI=ao-57-4-666.10.1364/AO.57.000666Suche in Google Scholar PubMed
2. Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J. et al. The 2017 terahertz science and technology roadmap. J Phys D: Appl Phys. 2017;50:28.10.1088/1361-6463/50/4/043001Suche in Google Scholar
3. Yin M, Tang S, Tong M. The application of terahertz spectroscopy to liquid petrochemicals detection: a review. Appl Spectrosc Rev. [Internet]. 27 May 2016. 51:379–96. Available at: http://www.tandfonline.com/doi/full/10.1080/05704928.2016.1141291. Accessed: 10 Jan 2018.10.1080/05704928.2016.1141291Suche in Google Scholar
4. Peiponen K-E, Zeitler A, Kuwata-Gonokami M. editors. Terahertz Spectroscopy and Imaging [Internet], Berlin, Heidelberg: Springer Berlin Heidelberg. 2013. (Springer Series in Optical Sciences; vol. 171). Available at: http://link.springer.com/10.1007/978-3-642-29564-5.Accessed: 4 2018 May.10.1007/978-3-642-29564-5Suche in Google Scholar
5. Shumyatsky P, Alfano RR. Terahertz sources. J Biomed Opt. [Internet]. 2011;16: 033001. Available at: http://biomedicaloptics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3554742. Accessed: 11 2018 Jun.10.1117/1.3554742Suche in Google Scholar PubMed
6. Chen N, Liang J, Ren L. High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. Appl Opt. [Internet]. 2013;52:5297–302. Available at: http://ao.osa.org/abstract.cfm?URI=ao-52-21-5297.10.1364/AO.52.005297Suche in Google Scholar PubMed
7. Yang Y atmospheric effects on free-space THz THz time-domain spectroscopy (THz-TDS). Available at: https://www.omicsonline.org/open-access/atmospheric-effects-on-freespace-thz-j-laser-opt-photonics-1000e104.pdf. Accessed: 4 May 2018 .Suche in Google Scholar
8. Kanglin W, Mittleman DM. Metal wires for terahertz wave guiding. Lett to Nat. [Internet]. 2003. Available at: https://www.brown.edu/research/labs/mittleman/sites/brown.edu.research.labs.mittleman/files/uploads/waveguideNature.pdf. Accessed: 4 May 2018.Suche in Google Scholar
9. Harrington JA, George R, Pedersen P, Mueller E, Fink 12Y, Winn JN. et al. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers. Appl Phys Lett. [Internet]. 2003;76:70–77. Available at: https://www.osapublishing.org/DirectPDFAccess/AF1BEC93-B69F-E1FE-1A5E4CD8560E5E12_81454/oe-12-21-5263.pdf?da=1&id=81454&seq=0&mobile=no. Accessed: 4 May 2018.Suche in Google Scholar
10. Dupuis A, Stoeffler K, Ung B, Dubois C, Skorobogatiy M. Transmission measurements of hollow-core THz Bragg fibers. J Opt Soc Am B. [Internet]. 2011 1 Apr;28:896.Available at: https://www.osapublishing.org/abstract.cfm?URI=josab-28-4-896. Accessed: 6 May 2018.10.1364/JOSAB.28.000896Suche in Google Scholar
11. Uthman M, Rahman BMA, Kejalakshmy N, Agrawal A, Grattan KTV. Design and characterization of low-loss porous-core photonic crystal fiber. IEEE Photonics J. 2012;4:2315–25.10.1109/JPHOT.2012.2231939Suche in Google Scholar
12. Chen LJ, Chen HW, Kao TF, Lu JY, Sun CK. Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt Lett. 2006;31:308–10.10.1364/OL.31.000308Suche in Google Scholar PubMed
13. Nagel M, Marchewka A, Kurz H. Low-index discontinuity terahertz waveguides. Opt Express. [Internet]. 2006 Oct 16;14:9944. Available at: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-14-21-9944. Accessed: 6 May 2018.10.1364/OE.14.009944Suche in Google Scholar PubMed
14. Han H, Park H, Cho M, Kim J. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl Phys Lett. 2002;80:2634–36.10.1063/1.1468897Suche in Google Scholar
15. Hassani A, Dupuis A, Skorobogatiy M. Porous polymer fibers for low-loss Terahertz guiding. Opt Express. 2008;16:6340–51.10.1364/OE.16.006340Suche in Google Scholar
16. Atakaramians S, Afshar S, Fischer BM, Abbott D, Monro TM. Porous fibers: a novel approach to low loss THz waveguides. Opt Express. 2008;16:8845–54.10.1364/OE.16.008845Suche in Google Scholar PubMed
17. Bai JJ, Li JN, Zhang H, Fang H, Chang SJ. A porous terahertz fiber with randomly distributed air holes. Appl Phys B Lasers Opt. 2011;103:381–86.10.1007/s00340-010-4334-xSuche in Google Scholar
18. Yuan W, Khan L, Webb DJ, Kalli K, Rasmussen HK, Stefani A. et al. Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt Express. [Internet]. 2011;19:19731–39. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21996915.10.1364/OE.19.019731Suche in Google Scholar PubMed
19. Goto M, Quema A, Takahashi H, Ono S, Sarukura N. Teflon photonic crystal fiber as terahertz waveguide. Jpn J Appl Physics, Part 2 Lett. 2004;43:ME33.10.1143/JJAP.43.L317Suche in Google Scholar
20. Anthony J, Leonhardt R, Argyros A, Large MCJ. Characterization of a microstructured Zeonex terahertz fiber. J Opt Soc Am B. [Internet]. 2011 1 May;28:1013. Available at: https://www.osapublishing.org/abstract.cfm?URI=josab-28-5-1013. Accessed: 8 May 2018.10.1364/JOSAB.28.001013Suche in Google Scholar
21. Nielsen K, Rasmussen HK, Adam AJ, Planken PC, Bang O, Jepsen PU. Bendable, low-loss Topas fibers for the terahertz frequency range. Opt Express. [Internet]. 2009;17:8592. Available at: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-10-8592.10.1364/OE.17.008592Suche in Google Scholar
22. Markos C, Stefani A, Nielsen K, Rasmussen HK, Yuan W, Bang O. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt Express. 2013;21:4758–65.10.1364/OE.21.004758Suche in Google Scholar PubMed
23. Emiliyanov G, Jensen JB, Bang O, Hoiby PE, Pedersen LH, Kjaer EM. et al. Localized biosensing with Topas microstructured polymer optical fiber. Opt Lett. [Internet]. 2007;32:460–62. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17392887.10.1364/OFS.2006.ThF2Suche in Google Scholar
24. Balakrishnan J, Fischer BM, Abbott D. Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl Opt. [Internet]. 2009;48:2262–66. Available at: http://ao.osa.org/abstract.cfm?URI=ao-48-12-2262.10.1364/AO.48.002262Suche in Google Scholar
25. Islam MS, Rana S, Islam MR, Faisal M, Rahman H, Sultana J. Porous core photonic crystal fibre for ultra-low material loss in THz regime. IET Commun. [Internet]. 2016;10:2179–83. Available at: http://digital-library.theiet.org/content/journals/10.1049/iet-com.2016.0227.10.1049/iet-com.2016.0227Suche in Google Scholar
26. Islam MS, Sultana J, Atai J, Islam MR, Abbott D. Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation. Opt J Light Electron Opt. 2017;145:398–406.10.1016/j.ijleo.2017.07.061Suche in Google Scholar
27. Islam MS, Sultana J, Faisal M, Islam MR, Dinovitser A, Ng BW-H. et al. A modified hexagonal photonic crystal fiber for terahertz applications. Opt Mater (Amst). [Internet]. 2018 1 May;79:336–39. Available at: https://www.sciencedirect.com/science/article/pii/S0925346718301873. Accessed: 11 Dec 2018.10.1016/j.optmat.2018.03.054Suche in Google Scholar
28. Islam MS, Sultana J, Rana S, Islam MR, Faisal M, Kaijage SF, et al. Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt Fiber Technol. 2017;34:6–11.10.1016/j.yofte.2016.11.014Suche in Google Scholar
29. Sultana J, Islam MS, Islam MR, Abbott D. High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications. Electron Lett. [Internet]. 2018;54:61–62. Available at: http://digital-library.theiet.org/content/journals/10.1049/el.2017.3694.10.1049/el.2017.3694Suche in Google Scholar
30. Sultana J, Islam MS, Faisal M, Islam MR, Ng BWH, Ebendorff-Heidepriem H. et al. Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt Commun. 2018;407:92–96.10.1016/j.optcom.2017.09.020Suche in Google Scholar
31. Islam MS, Sultana J, Dinovitser A, Ahmed K, Ng BWH, Abbott D. Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt Commun. 2018;426:341–47.10.1016/j.optcom.2018.05.030Suche in Google Scholar
32. Islam M, Sultana J, Rifat A, Dinovitser A, Ng BWH, Abbott D. 2018. Terahertz sensing in a hollow core photonic crystal fiber. Ieeexplore IEEE Org. [Internet]. 2018 ;18:4073–80. Available at: https://ieeexplore.ieee.org/abstract/document/8325465/. Accessed: 11 Dec 2018.10.1109/JSEN.2018.2819165Suche in Google Scholar
33. Sultana J, Islam MS, Ahmed K, Dinovitser A, Ng BWH, Abbott D. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl Opt. 2018;57:2426–33.10.1364/AO.57.002426Suche in Google Scholar PubMed
34. Islam MS, Sultana J, Ahmed K, Islam MR, Dinovitser A, Ng BWH. et al. A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens J. 2018;18:575–82.10.1109/JSEN.2017.2775642Suche in Google Scholar
35. Islam R, Habib MS, Hasanuzzaman GKM, Rana S, Sadath MA, Markos C. A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photonics Technol Lett. 2016;28:1537–40.10.1109/LPT.2016.2550205Suche in Google Scholar
36. Islam MS, Sultana J, Atai J, Abbott D, Rana S, Islam MR Ultra low-loss hybrid core porous fiber for broadband applications. Appl Opt. [Internet]. 2017;56:1232. Available at: https://www.osapublishing.org/abstract.cfm?URI=ao-56-4-1232.10.1364/AO.56.001232Suche in Google Scholar PubMed
37. Islam MS, Sultana J, Dorraki M, Atai J, Islam MR, Dinovitser A. et al. Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation. Photonic Netw Commun. 2018;35:364–73.10.1007/s11107-017-0751-7Suche in Google Scholar
38. Nielsen M, Mortensen N, Albertsen M, Folkenberg J, Bjarklev A, Bonacinni D. Predicting macrobending loss for large-mode area photonic crystal fibers. Opt Express. 2004;12:1775–79.10.1364/OPEX.12.001775Suche in Google Scholar PubMed
39. Kaijage SF, Ouyang Z, Jin X. Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol Lett. 2013;25:1454–57.10.1109/LPT.2013.2266412Suche in Google Scholar
40. Birks TA, Knight JC, Russell PSJ. Endlessly single-mode photonic crystal fiber. Opt Lett. 1997;22:961–63.10.1364/OL.22.000961Suche in Google Scholar
41. Wallace J. MICRO-OPTICS: stack-and-draw produces nanostructured lenses - Laser Focus World [Internet]. 2012. Available at: http://www.laserfocusworld.com/articles/print/volume-48/issue-08/world-news/micro-optics-stack-and-draw-produces-nanostructured-lenses.html. Accessed: 1 Jan 2018.Suche in Google Scholar
42. van Eijkelenborg M, Large M, Argyros A, Zagari J, Manos S, Issa N. et al. Microstructured polymer optical fibre. Opt Express. 2001;9:319–27.10.1364/OE.9.000319Suche in Google Scholar
43. Bise RT, Trevor DJ. Sol-gel derived microstructured fiber: fabrication and characterization. OFC/NFOEC Tech Dig Opt Fiber Commun Conf 2005. 2005;3:11–13.10.1109/OFC.2005.192772Suche in Google Scholar
44. Ebendorff-Heidepriem H, Monro TM. Extrusion of complex preforms for microstructured optical fibers. Opt Express. [Internet]. 2007 Nov 12 ;15:15086. Available at: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-23-15086. Accessed: 2 Jan 2018.10.1364/OE.15.015086Suche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Amplifiers
- Performance Investigate and Analysis of 96 × 10 Gbps DWDM System Using Suitable Rating from Optical Amplifiers
- Devices
- Design and Analysis of 3-Input NAND/NOR/XNOR Gate Based on 2D Photonic Crystals
- All-Optical Switching Device Using Plasmonic Mach-Zehnder Interferometer Structure
- Fibers
- Theoretical Assessment of a Porous Core Photonic Crystal Fiber for Terahertz Wave Propagation
- Networks
- Method and Algorithm for Topology Automatic Discovery in Complicated Passive Optical Network Architecture
- The Engagement of Hybrid Ultra High Space Division Multiplexing with Maximum Time Division Multiplexing Techniques for High-Speed Single-Mode Fiber Cable Systems
- Hybrid Algorithm Based Effective Light Trail Creation in an Optical Networks
- Adaptive Scheduling Mechanism with Variable Bit Rate Traffic in EPON
- A Novel Implementation of TCP Vegas by UsingA Fuzzy-Threshold Base Algorithm to Improve Performance of Optical Networks
- Improving Performance of Optical Networks by a Probable Approach
- Systems
- UltraHigh Bit-Rate Hybrid DWDM Optical System Design Using DP-QPSK Modulation
- Performance Limits of FSO Based SAC-OCDMA System Under Weather Conditions
- Performance Appraisal of Sigma Delta Modulated Radio over Fiber System
- Behavior study of EDEU optical code for FE-OCDMA system
- Performances enhancement of underwater wireless optical communications (UWOC) using pulse position modulation
- Theory
- Design and Simulation of OFDM for BPSK, QPSK and QAM with Peak Power Reduction Using Clipping Technique
Artikel in diesem Heft
- Frontmatter
- Amplifiers
- Performance Investigate and Analysis of 96 × 10 Gbps DWDM System Using Suitable Rating from Optical Amplifiers
- Devices
- Design and Analysis of 3-Input NAND/NOR/XNOR Gate Based on 2D Photonic Crystals
- All-Optical Switching Device Using Plasmonic Mach-Zehnder Interferometer Structure
- Fibers
- Theoretical Assessment of a Porous Core Photonic Crystal Fiber for Terahertz Wave Propagation
- Networks
- Method and Algorithm for Topology Automatic Discovery in Complicated Passive Optical Network Architecture
- The Engagement of Hybrid Ultra High Space Division Multiplexing with Maximum Time Division Multiplexing Techniques for High-Speed Single-Mode Fiber Cable Systems
- Hybrid Algorithm Based Effective Light Trail Creation in an Optical Networks
- Adaptive Scheduling Mechanism with Variable Bit Rate Traffic in EPON
- A Novel Implementation of TCP Vegas by UsingA Fuzzy-Threshold Base Algorithm to Improve Performance of Optical Networks
- Improving Performance of Optical Networks by a Probable Approach
- Systems
- UltraHigh Bit-Rate Hybrid DWDM Optical System Design Using DP-QPSK Modulation
- Performance Limits of FSO Based SAC-OCDMA System Under Weather Conditions
- Performance Appraisal of Sigma Delta Modulated Radio over Fiber System
- Behavior study of EDEU optical code for FE-OCDMA system
- Performances enhancement of underwater wireless optical communications (UWOC) using pulse position modulation
- Theory
- Design and Simulation of OFDM for BPSK, QPSK and QAM with Peak Power Reduction Using Clipping Technique