Startseite Mode Conversion Based on Lateral Misalignment between Two Multi-Ring Core Fibers for MDM System
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mode Conversion Based on Lateral Misalignment between Two Multi-Ring Core Fibers for MDM System

  • Rabiu Imam Sabitu EMAIL logo und Amin Malekmohammadi
Veröffentlicht/Copyright: 17. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this report, mode conversion based on the lateral misalignment between two similar multi-ring core fibers (M-RCFs) is proposed. The conversion was achieved by varying the lateral height (y) and the distance (x) that separates the two M-RCFs. Based on the achieved coupled power of 94%, this technique may find application as a conversion device during multiplexing in mode-division multiplexed systems (MDM).

References

1. Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics. 2013;7:354–62.10.1038/nphoton.2013.94Suche in Google Scholar

2. Dong-Nhat N, Elsherif MA, Malekmohammadi A. Investigations of high-speed optical transmission systems employing absolute added correlative coding (AACC). Opt Fiber Technol. 2016;30:23–31.10.1016/j.yofte.2016.01.013Suche in Google Scholar

3. Malekmohammadi A, Mahdiraji GA, Abdullah MK, Abas AF, Mokhtar A, Rasid MFA. Absolute polar duty cycle division multiplexing technique. Int Rev Opt Eng. 2008;3:395–400.Suche in Google Scholar

4. G. Amouzad Mahdiraji, Malekmohammadi A, Abas AF, Mokhtar M, Abdullah MK. A novel economical duty cycle division multiplexing with electrical multiplexer and demultiplexer for optical communication systems. Int J Inf Commun Technol. 2009;2:31–40.10.1504/IJICT.2009.026427Suche in Google Scholar

5. Richardson DJ. New optical fibres for high-capacity optical communications subject areas. Philos Trans R Soc A. 2016;374:20140441.10.1098/rsta.2014.0441Suche in Google Scholar PubMed PubMed Central

6. Li J, Juhao Ren, Fang Hu, Tao Li, Zhengbin He, Yongqi Chen, et al. Recent progress in mode-division multiplexed passive optical networks with low modal crosstalk. Opt Fiber Technol. 2017;35:28–36.10.1016/j.yofte.2016.08.001Suche in Google Scholar

7. Sebastian Gnauck, Alan H. Bolle, Cristian Sierra, Alberto Mumtaz, Sami Esmaeelpour, Mina Burrows, et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing. J Light Technol. 2012;30:521–31.10.1109/JLT.2011.2174336Suche in Google Scholar

8. Saridis GM, Alexandropoulos D, Zervas G, Simeonidou D. Survey and evaluation of space division multiplexing: from technologies to optical networks. IEEE Commun Surv Tutorials. 2015;17:2136–56.10.1109/COMST.2015.2466458Suche in Google Scholar

9. N. Bai, Ezra Huang, Yue-Kai Mateo, Eduardo Yaman, Fatih Li, Ming-Jun Bickham, et al. Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt Express. 2012;20:2668.10.1364/OE.20.002668Suche in Google Scholar PubMed

10. X. Pang, Xiaodan Van Kerrebrouck, Joris Ozolins, Oskars Lin, Rui Udalcovs, Aleksejs Zhang, et al. 7×100 Gbps PAM-4 Transmission over 1-km and 10-km single mode 7-core fiber using 1.5-μm SM-VCSEL. In: Optical fiber communication conference, 2018:M1I.4.10.1364/OFC.2018.M1I.4Suche in Google Scholar

11. Zhang H, Liu Y, Wang Z, Han Y, Yang K, Yu J. Mode division multiplexing coupler of four LP modes based on a five-core microstructured optical fiber. Opt Commun. 2018;410:496–503.10.1016/j.optcom.2017.09.085Suche in Google Scholar

12. Chen M-Y, Wei J, Sheng Y, Ren NF. Design and optimization of fundamental mode filters based on long-period fiber gratings. Opt Fiber Technol. 2016;30:89–94.10.1016/j.yofte.2016.03.006Suche in Google Scholar

13. Malekmohammadi A, Abdullah MK, Mahdiraji GA, Abas AF, Mokhtar M, Rasid MF, et al. Decision circuit and bit error rate estimation for absolute polar duty cycle division multiplexing. Int Rev Electr Eng-Iree. 2008;3:592–9.10.1049/iet-opt.2009.0008Suche in Google Scholar

14. GA Mahdiraji, Abdullah MK, Mokhtar M, Mohammadi AM, Abas AH, Basir SM, et al. 70-Gb/s amplitude-shift-keyed system with 10-GHz clock recovery circuit using duty cycle division multiplexing. Photonic Network Commun. 2010;19:233–9.10.1007/s11107-009-0228-4Suche in Google Scholar

15. Sakata H, Sano H, Harada T. Optical fiber technology tunable mode converter using electromagnet-induced long-period grating in two-mode fiber. Opt Fiber Technol. 2014;20:224–7.10.1016/j.yofte.2014.02.003Suche in Google Scholar

16. MY Lan, Song Gao, Li Cai, Shan Yong Ma, Chen Xing Qi, Xiao Li Du, Zhi Chao. Mode conversion models based on spatial spectral matching for mode division multiplexing in optical fibers. Appl Mech Mater. 2014;596:807–10.10.4028/www.scientific.net/AMM.596.807Suche in Google Scholar

17. Igarashi K, Souma D, Tsuritani T, Morita I. Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber. Opt Express. 2014;22:20881.10.1364/OE.22.020881Suche in Google Scholar PubMed

18. Gao Y, Sun J, Chen G, Sima C. Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings. Opt Express. 2015;23:9959.10.1364/OE.23.009959Suche in Google Scholar PubMed

19. Dai D. Silicon-based multi-channel mode (de)multiplexer for on-chip optical interconnects. In Advanced photonics for communications, 2014:IM2A.2.10.1364/IPRSN.2014.IM2A.2Suche in Google Scholar

20. Gross S, Riesen N, Love JD, Withford MJ, Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photon Rev. 2014;8:L81–L85.10.1002/lpor.201400078Suche in Google Scholar

21. Riesen N, Gross S, Love JD, Withford MJ, Femtosecond direct-written integrated mode couplers. Opt Express. 2014;22:29855.10.1364/OE.22.029855Suche in Google Scholar PubMed

22. Bhatia N, Rustagi KC, John J. Single LP(0,n) mode excitation in multimode fibers. Opt Express. 2014;22:16847–62.10.1364/OE.22.016847Suche in Google Scholar PubMed

23. Mellah H, Zhang X, Shen D. LP01 to LP0m mode converters using all-fiber two-stage tapers. Opt Commun. 2015;354:148–53.10.1016/j.optcom.2015.05.066Suche in Google Scholar

24. Li Z, Lu D, Zhao L, Liang S, Zhou X, Pan J. An InP-based two-mode converter/(de)multiplexer with 100 % mode conversion efficiency by using multimode interference couplers as the building blocks. In: Conference on lasers and electro-optics, 2016:JW2A.123.10.1364/CLEO_AT.2016.JW2A.123Suche in Google Scholar

25. Lee YS, Lim KS, Zaini MK, Ahmad H. LP 11 –LP 01 mode conversion based on an angled-facet two-mode fiber. IEEE Photonics Technol Lett. 2017;29:1007–10.10.1109/LPT.2017.2700946Suche in Google Scholar

26. Hull CW. Apparatus for production of three-dimensional objects by stereolithography. US Pat. 4,575,330, 1;1986:1–16.Suche in Google Scholar

27. Fini JM, Taunay TF, Zhu B, Yan MF. Low cross-talk design of multi-core fibers. In: Conference on lasers and electro-optics, 2010:CTuAA3.10.1364/CLEO.2010.CTuAA3Suche in Google Scholar

28. Jiang S, Ma L, He Z. Orientation-insensitive azimuthally asymmetric mode rotator using chirally-coupled-core fiber. Opt Express. 2018;26:5146.10.1364/OE.26.005146Suche in Google Scholar PubMed

29. Love JD, Riesen N. Mode-selective couplers for few-mode optical fiber networks. Opt Lett. 2012;37:3990.10.1364/OL.37.003990Suche in Google Scholar PubMed

30. Chu PL. Mode conversion due to tilts in multimode optical fibre. Electron Lett. 1974;10:459.10.1049/el:19740364Suche in Google Scholar

Received: 2018-09-28
Accepted: 2019-01-03
Published Online: 2019-01-17
Published in Print: 2022-01-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Signal Wavelength Effect on Overmodulation in Thulium Doped Fiber Amplifiers with Amplified Spontaneous Emission: A Simulink Pedestal
  4. Devices
  5. Evaluating RSOA Performance with Optical Logic Gates at 100 Gbps Data Rate
  6. An All Optical NAND Gate Using Nonlinear Photonic Crystal Ring Resonators
  7. CO-OFDM System with 16-QAM Subcarrier Modulation Using Reconfigurable Optical Add Drop Multiplexer
  8. Fibers
  9. Mode Conversion Based on Lateral Misalignment between Two Multi-Ring Core Fibers for MDM System
  10. Networks
  11. Effect of Fiber-Optics Nonlinearities in Long Haul and Ultra-High Speed DWDM Optical Transmission Networks at 10, 40 and 100 Gb/s Ultra-High Speed Data Rates
  12. Hardware-Based Framework of Photonic Reservoir Computing with Coupled SOAs Network
  13. Performance of Hybrid OCDMA/WDM Scheme Under DPSK and QPSK Modulation Using Spectral Direct Detection Technique for Optical Communication Networks
  14. Transmission Performance Comparison of 16*100 Gbps Dense Wavelength Division Multiplexed Long Haul Optical Networks at Different Advance Modulation Formats under the Influence of Nonlinear Impairments
  15. On the Performance of Protected and Online Routing Enabled Translucent Space Division Multiplexing-Based Elastic Optical Networks
  16. A Novel Multicast Scheme with Grooming for Quality of Service (QoS) Provision and Resource Optimization over Optical Label Switching (OLS) Networks
  17. DHbLP: A Novel Technique for Survivability in Optical Networks
  18. Systems
  19. Performance Evaluation of Hybrid FSO-SACOCDMA System under Different Weather Conditions
  20. Error Rate Analysis of Phase Sampled RZ-GMSK over Turbulent FSO Channel
  21. Enhanced Performances of W/S SAC-OCDMA System Using LDPC Code
  22. 320 Gbps Free Space Optic Communication System Deploying Ultra Dense Wavelength Division Multiplexing and Polarization Mode Division Multiplexing
  23. Performance Analysis of Duobinary and CSRZ Modulation Based Polarization Interleaving for High-Speed WDM-FSO Transmission System
  24. Investigation on Pointing Error in Multi-Beam Free Space Optical Communication System
  25. Enhancing Performance of Hybrid FSO/Fiber Optic Communication Link Utilizing Multi-Channel Configuration
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2018-0175/html
Button zum nach oben scrollen