Startseite A New Proposal for Ultra-Compact Polarization Independent Power Splitter Based on Photonic Crystal Structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A New Proposal for Ultra-Compact Polarization Independent Power Splitter Based on Photonic Crystal Structures

  • Hadi Razmi , Mohammad Soroosh EMAIL logo und Yousef S. Kavian
Veröffentlicht/Copyright: 24. März 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polarization dependency imposes great limitations for application of optical device in optical networks and systems. In this paper, we are going to design and propose a 1*2 all optical polarization independent power splitter based on photonic crystal structures. For designing such a device we should employ a fundamental photonic crystal structure which has joint photonic band gap. The obtained results show that at 1,560 nm wavelength the final structure has transmission efficiency equal to 45 % for outputs in both TE and TM modes.

References

1. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987;58:2486–2489.10.1103/PhysRevLett.58.2486Suche in Google Scholar PubMed

2. Liu D, Gao Y, Tong A, Hu S. Absolute photonic band gap in 2D honeycomb annular photonic crystals. Phys Lett A 2015;379:214–217.10.1016/j.physleta.2014.11.030Suche in Google Scholar

3. Alipour-Banaei H, Mehdizadeh F. Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J Opt Commun 2013;34:133–138.10.1515/joc-2013-0033Suche in Google Scholar

4. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F, Andalib A. Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J Opt Commun 2015;36:423–232.10.1515/joc-2014-0049Suche in Google Scholar

5. Noori M, Soroosh M. A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Opt – Int J Light Electron Opt 2015;126:4775–4781.10.1016/j.ijleo.2015.08.082Suche in Google Scholar

6. Roshan Entezar S. Photonic crystal wedge as a tunable multichannel filter. Superlattices Microstruct 2015;82:33–39.10.1016/j.spmi.2015.01.039Suche in Google Scholar

7. Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M. A new proposal for PCRR-based channel drop filter using elliptical rings. Phys E Low-Dimensional Syst. Nanostruct 2014;56:211–215.10.1016/j.physe.2013.07.018Suche in Google Scholar

8. Rakhshani MR, Mansouri-Birjandi MA. Realization of tunable optical filter by photonic crystal ring resonators. Opt – Int J Light Electron Opt 2013;124:5377–5380.10.1016/j.ijleo.2013.03.114Suche in Google Scholar

9. Taalbi A, Bassou G, Youcef Mahmoud M. New design of channel drop filters based on photonic crystal ring resonators. Opt – Int J Light Electron Opt 2013;124:824–827.10.1016/j.ijleo.2012.01.045Suche in Google Scholar

10. Alipour-Banaei H, Jahanara M, Mehdizadeh F. T-shaped channel drop filter based on photonic crystal ring resonator. Opt – Int J Light Electron Opt 2014;125:5348–5351.10.1016/j.ijleo.2014.06.056Suche in Google Scholar

11. Dideban A, Habibiyan H, Ghafoorifard H. Photonic crystal channel drop filters based on fractal structures. Phys E Low-Dimensional Syst. Nanostruct 2014;63:304–310.10.1016/j.physe.2014.06.009Suche in Google Scholar

12. Zavvari M, Mehdizadeh F. Photonic crystal cavity with L3-defect for resonant optical filtering. Frequenz 2014;68:519–523.10.1515/freq-2014-0069Suche in Google Scholar

13. Mehdizadeh F, Alipour-Banaei H, Serajmohammadi S. Channel-drop filter based on a photonic crystal ring resonator. J Opt 2013;125:075401.10.1088/2040-8978/15/7/075401Suche in Google Scholar

14. Youcef Mahmoud M, Bassou G, Metehri F. Channel drop filter using photonic crystal ring resonators for CWDM communication systems. Opt – Int J Light Electron Opt 2014;125:4718–4721.10.1016/j.ijleo.2014.04.084Suche in Google Scholar

15. Robinson S, Nakkeeran R. Two dimensional photonic crystal ring resonator based add drop filter for CWDM systems. Opt – Int J Light Electron Opt 2013;124:3430–3435.10.1016/j.ijleo.2012.10.038Suche in Google Scholar

16. Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Opt – Int J Light Electron Opt 2013;124:2639–2644.10.1016/j.ijleo.2012.07.029Suche in Google Scholar

17. Mehdizadeh F, Soroosh M. A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Networking Commun 2016;31:65–70.10.1007/s11107-015-0531-1Suche in Google Scholar

18. Mehdizadeh F, Soroosh M. A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Networking Commun 2015;42:137–143.10.1007/s11107-015-0531-1Suche in Google Scholar

19. Mehdizadeh F, Soroosh M, Alipour-Banaei H. An optical demultiplexer based on photonic crystal ring resonators. Opt – Int J Light Electron Opt 2016;127:8706–8709.10.1016/j.ijleo.2016.06.086Suche in Google Scholar

20. Bouamami S, Naoum R. New version of seven wavelengths demultiplexer based on the microcavities in a two-dimensional photonic crystal. Opt – Int J Light Electron Opt 2014;125:7072–7074.10.1016/j.ijleo.2014.08.101Suche in Google Scholar

21. Bazargani HP. Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt Commun 2012;285:1848–1853.10.1016/j.optcom.2011.12.002Suche in Google Scholar

22. Koshiba M. Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J Light Technol 2001;19:1970–1979.10.1109/50.971693Suche in Google Scholar

23. Rostami A, Banaei HA, Nazari F, Bahrami A. An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Opt – Int J Light Electron Opt 2011;122:1481–1485.10.1016/j.ijleo.2010.05.036Suche in Google Scholar

24. Zhang X, Liao Q, Yu T, Liu N, Huang Y. Novel ultracompact wavelength division demultiplexer based on photonic band gap. Opt Commun 2012;285:274–276.10.1016/j.optcom.2011.10.001Suche in Google Scholar

25. Alipour-Banaei H, Mehdizadeh F, Serajmohammadi S. A novel 4-channel demultiplexer based on photonic crystal ring resonators. Opt – Int J Light Electron Opt 2013;124:5964–5967.10.1016/j.ijleo.2013.04.117Suche in Google Scholar

26. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Networking Commun 2014;29:146–150.10.1007/s11107-014-0483-xSuche in Google Scholar

27. Yanik MF, Fan S, Soljačić M, Joannopoulos JD. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt Lett 2003;28:2506–2508.10.1364/OL.28.002506Suche in Google Scholar

28. Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt Express 2005;13:2678.10.1364/OPEX.13.002678Suche in Google Scholar

29. Serajmohammadi S, Alipour-Banaei H, Mehdizadeh F. All optical decoder switch based on photonic crystal ring resonators. Opt Quantum Electron 2014;47:1109–1115.10.1007/s11082-014-9967-2Suche in Google Scholar

30. Zhang Y, Zhang Y, Li B. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express 2007;15:9287.10.1364/OE.15.009287Suche in Google Scholar PubMed

31. Selim R, Pinto D, Obayya SS. Novel fast photonic crystal multiplexer-demultiplexer switches. Opt Quantum Electron 2011;42:425–433.10.1007/s11082-011-9438-ySuche in Google Scholar

32. Alipour-Banaei H, Mehdizadeh F, Serajmohammadi S, Hassangholizadeh-Kashtiban M. A 2*4 all optical decoder switch based on photonic crystal ring resonators. J Mod Opt 2014;62:430–434.10.1080/09500340.2014.957743Suche in Google Scholar

33. Mehdizadeh F, Soroosh M, Alipour-Banaei H. A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt Quantum Electron 2015;48:20–28.10.1007/s11082-015-0313-0Suche in Google Scholar

34. Sharkawy A, Shi S, Prather DW, Soref RA. Electro-optical switching using coupled photonic crystal waveguides. Opt Express 2002;10:1048.10.1364/OE.10.001048Suche in Google Scholar PubMed

35. Husko C, Vo TD, Corcoran B, Li J, Krauss TF, Eggleton BJ. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide.. Opt Express 2011;19:20681–20690.10.1364/OE.19.020681Suche in Google Scholar PubMed

36. Ghadrdan M, Mansouri-Birjandi MA. Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt Quantum Electron 2013;45:1027–1036.10.1007/s11082-013-9713-1Suche in Google Scholar

37. Bao J, Xiao J, Fan L, Li X, Hai Y, Zhang T, et al.. Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt Commun 2014;377:148–155.Suche in Google Scholar

38. Rani P, Kalra Y, Sinha RK. Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. Opt Commun 2016;374:148–155.10.1016/j.optcom.2016.04.037Suche in Google Scholar

39. Jung YJ, Yu S, Koo S, Yu H, Han S, Park N, et al., Reconfigurable all-optical logic AND, NAND, OR, NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities, in: Conf. Lasers Electro-Optics/Pacific Rim, 2009: p. TuB4_3.10.1109/CLEOPR.2009.5292059Suche in Google Scholar

40. Goudarzi K, Mir A, Chaharmahali I, Goudarzi D. All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal. Opt Laser Technol 2016;78:139–142.10.1016/j.optlastec.2015.10.013Suche in Google Scholar

41. Gupta MM, Medhekar S. All-optical NOT AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides. Opt – Int J Light Electron Opt 2015;126:167–176.10.1016/j.ijleo.2015.10.176Suche in Google Scholar

42. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Opt – Int J Light Electron Opt 2014;125:5701–5704.10.1016/j.ijleo.2014.06.013Suche in Google Scholar

43. Zabelin V, Dunbar LA, Le Thomas N, Houdré R, Kotlyar MV, O’Faolain L, et al.. Self-collimating photonic crystal polarization beam splitter. Opt Lett 2007;32:530–532.10.1364/OL.32.000530Suche in Google Scholar

44. Huang Z, Yang X, Wang Y, Meng X, Fan R, Wang L. Ultrahigh extinction ratio of polarization beam splitter based on hybrid photonic crystal waveguide structures. Opt Commun 2015;354:9–13.10.1016/j.optcom.2015.05.040Suche in Google Scholar

45. Ghaffari A, Monifi F, Djavid M, Abrishamian MS. Photonic crystal bends and power splitters based on ring resonators. Opt Commun 2008;281:5929–5934.10.1016/j.optcom.2008.09.015Suche in Google Scholar

Received: 2017-02-02
Accepted: 2017-03-06
Published Online: 2017-03-24
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2017-0021/html
Button zum nach oben scrollen