Startseite A Coherent Optical OFDM Communication System with Nonlinear Distortion Compensation in the Channel and Receiver
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Coherent Optical OFDM Communication System with Nonlinear Distortion Compensation in the Channel and Receiver

  • R. S. Asha EMAIL logo und V. K. Jayasree
Veröffentlicht/Copyright: 6. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A simple and low-cost scheme is proposed for reducing the distortions in the coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system. The total wireless channel noise and the distortions in the receiver can be considered as an additive white Gaussian noise model and all distortions can be reduced using maximum likelihood sequence estimation (MLSE) equalizers. The performance of the CO-OFDM is analyzed for different fiber lengths and laser powers. Results show that the MLSE-equalized system can outperform with a higher Q-factor of 8 dB than conventional CO-OFDM system.

References

1. Shieh W, Athaudage C. Coherent optical orthogonal frequency division multiplexing. Electron Lett 2006;42:587–9.10.1049/el:20060561Suche in Google Scholar

2. Shieh W. PMD-supported coherent optical OFDM systems. IEEE Photon Technol Lett 2007;19:134–6.10.1109/LPT.2006.889035Suche in Google Scholar

3. Shieh W, Yi X, Tang Y. Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber. Electron Lett 2007;43:183–5.10.1049/el:20073496Suche in Google Scholar

4. Jansen SL, Morita I, Takeda N, Tanaka H. 20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-Pilot tone phase noise compensation. In: Optical fiber communication conference and exposition and the National Fiber Optic Engineers Conference, Technical Digest (Anaheim, CA, USA, 2007), Paper PDP15.Suche in Google Scholar

5. Shieh W, Bao H, Tang Y. Coherent optical OFDM: theory and design. Opt Exp 2008;16:841–59.10.1364/OE.16.000841Suche in Google Scholar PubMed

6. Yi X, Shieh W, Ma Y. Phase noise effects on high spectral efficiency coherent optical OFDM transmission. J Lightwave Technol 2008;26:1309–16.10.1109/JLT.2008.919368Suche in Google Scholar

7. Weidenfeld R, Nazarathy M, Noe R, Shpantzer I. Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback. In: Proc. ECOC, 2009:1–2.Suche in Google Scholar

8. Kaminow IP, Li TY. Optical fiber telecommunications IVB. New York: Academic, 2002.Suche in Google Scholar

9. van Nee R. OFDM codes for peak-to-average power reduction and error correction. In: Proc. IEEE Global Telecommunication Conference, 1996:740–4.Suche in Google Scholar

10. Pan J, Cheng CH. Nonlinear electrical compensation for the coherent optical OFDM System. J Lightwave Technol 2011;29:2785–9.10.1109/JLT.2010.2098017Suche in Google Scholar

11. Kahn JM, Barry JR. Wireless infrared communications. Proc IEEE 1997;85:265–98.10.1109/5.554222Suche in Google Scholar

12. Proakis JG. Digital communications, 4th ed. New York: McGrawHill, 2000.Suche in Google Scholar

13. Elgala H, Mesleh R, Haas H, Pricope B. OFDM visible light wireless communication. In: Proc. 64th IEEE Veh. Technol. Conf., Dublin, Ireland, Apr. 22–25, 2007.10.1109/VETECS.2007.451Suche in Google Scholar

14. Li X, Mardling R, Armstrong J. Channel capacity of IM/DD optical communication systems and of ACO-OFDM. In: Proc. IEEE Int. Conf. Commun., Glasgow, UK, Jun. 24–28, 2007:2128–33.10.1109/ICC.2007.358Suche in Google Scholar

15. Dimitrov S, Haas H. Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J Lightwave Technol 2013;31:918–29.10.1109/JLT.2012.2236642Suche in Google Scholar

16. Prat J, Napoli A, Gene JM, Omella M, Poggiolini P, Curri V. Square root strategy: a novel method to linearize an optical communication system with electronic equalizers. In: Proc. European Conf. Optical Commun. (ECOC), vol. 3, pp. 713–714 (Glasgow, Scotland, 2005).Suche in Google Scholar

17. Carruthers JB, Kahn JM. Multiple-subcarrier modulation for nondirected wireless infrared communication. IEEE J Sel Areas White LEDs 1996;14:538–46.10.1109/49.490239Suche in Google Scholar

18. Tse D, Viswanath P. Fundamentals of wireless communication. Cambridge: Cambridge University, 2005.10.1017/CBO9780511807213Suche in Google Scholar

19. Kahn JM, Barry JR. Wireless infrared communications. Proc IEEE 1997;85:265–98.10.1109/5.554222Suche in Google Scholar

20. Elgala H, Mesleh R, Haas H, Pricope B. OFDM visible lightwireless communication based on white LEDs. In: Proc. 64th IEEEVeh. Technol. Conf., Dublin, Ireland, Apr. 22–25, 2007.10.1109/VETECS.2007.451Suche in Google Scholar

21. Li X, Mardling R, Armstrong J. Channel capacity of IM/DDoptical communication systems and of ACO-OFDM. In: Proc. IEEE Int. Conf. Commun., Glasgow, UK, Jun. 24–28, 2007:2128–33.10.1109/ICC.2007.358Suche in Google Scholar

22. Carruthers JB, Kahn JM. Multiple-subcarrier modulation for nondirected wireless infrared communication. IEEE J Sel Areas Commun 1996;14:538–46.10.1109/49.490239Suche in Google Scholar

23. Bussgang J. Res. Lab. Electron., Cross correlation function of amplitude distorted Gaussian signals Mass. Inst. Technol., Cambridge, MA, USA, Tech. Rep. 216, 1952 Mar.Suche in Google Scholar

24. Dardari D, Tralli V, Vaccari A. A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans Commun 2000;48:1755–64.10.1109/26.871400Suche in Google Scholar

25. Chunmin X, Werner R, Nonlinear Electrical Equalization for Different Modulation Formats With Optical Filtering, J Lightwave Technol., 2007;25–4:996–1001.10.1109/JLT.2007.891174Suche in Google Scholar

Received: 2016-6-20
Accepted: 2016-7-25
Published Online: 2016-9-6
Published in Print: 2017-8-28

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Gain Saturation Analysis of Raman–Fiber Optical Parametric Hybrid Amplifier
  4. Investigation of 16 × 10 Gbps DWDM System Based on Optimized Semiconductor Optical Amplifier
  5. A Coherent Optical OFDM Communication System with Nonlinear Distortion Compensation in the Channel and Receiver
  6. Detectors
  7. Evaluation of FSO Link Using Array of Photodetectors
  8. Devices
  9. Design of a Directional Coupler based on UV-Induced LiNbO3 Waveguides
  10. Fibers
  11. A Novel Demultiplexing Design for Coarse WDM: Exploiting Material Dispersion
  12. Integrated optics
  13. Exact Dispersion Study of an Asymmetric Thin Planar Slab Dielectric Waveguide without Computing d2βdk2 Numerically
  14. Networks
  15. Performance of Bus and Ring Network Topologies Based on SOA Bias Current
  16. A Energy-Saving Path-Shared Protection Based on Diversity Network Coding for Multi-rate Multicast in WDM Mesh Networks
  17. Receiver
  18. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions
  19. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions
  20. Systems
  21. Performance Evaluation and Nonlinear Mitigation through DQPSK Modulation in 32 × 40 Gbps Long-Haul DWDM Systems
  22. Numerical Analysis of the Performance of Millimeter-Wave RoF-Based Cellular Backhaul Links
  23. Impact of XPM Crosstalk on SCM-Based RoF Systems
  24. Simulative Investigation on the Effect of Different Parameters on the Performance of IsOWC System
  25. Application of Optical Frequency Comb in High-Capacity Long Distance Optical Communication for China-Pakistan Economic Corridor
  26. Theory
  27. Investigating and Modeling the Effect of Laser Intensity and Nonlinear Regime of the Fiber on the Optical Link
  28. Performance of Different OCDMA Codes with FWM and XPM Nonlinear Effects
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2016-0090/html
Button zum nach oben scrollen