Startseite A Energy-Saving Path-Shared Protection Based on Diversity Network Coding for Multi-rate Multicast in WDM Mesh Networks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Energy-Saving Path-Shared Protection Based on Diversity Network Coding for Multi-rate Multicast in WDM Mesh Networks

  • Danling Zheng , Lei Lv und Huanlin Liu EMAIL logo
Veröffentlicht/Copyright: 23. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For improving the survivability and energy saving of multi-rate multicast, a novel energy-saving path-shared protection based on diversity network coding (EPP-DNC) for multi-rate multicast in wavelength division multiplexing (WDM) mesh networks is proposed in the paper. In the EPP-DNC algorithm, diversity network coding on the source node for multi-rate multicast is adopted to reduce the coding energy consumption by avoiding network coding on the network’s intermediate nodes. To decrease the transmission energy, shortest path shared based on heuristic is proposed to transmit the protection information for the request. To provision request’s working paths efficiency, the working paths are routed on the preselected P-cycles with minimum required links and minimum energy consumption. Simulation results show that the proposed EPP-DNC can save energy consumption and improve bandwidth utilization.

Funding statement: This research was funded by the scientific research fund of Chongqing Municipal Commission (KJ1400421), the National Natural Science Foundation of China (NSFC 61275077), and the Basic and Frontier Research Program of Chongqing (CSTC 2013jcyjA40052).

References

1. Zhou H, Mao SW, Agrawal P. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks. Digital Commun Netw 2015;1(3):171–80.10.1016/j.dcan.2015.09.001Suche in Google Scholar

2. Yun D, Lee J. Research in green network for future internet. J KIISE 2010;28(1):41–51.Suche in Google Scholar

3. Fei Z, Yang J, Lu H. Improving routing efficiency through intermediate target based geographic routing. Digital Commun Netw 2015;1(3):204–12.10.1016/j.dcan.2015.07.001Suche in Google Scholar

4. Noguchi T, Matsuda T, Yamamoto M. Performance evaluation of new multicast architecture with network coding. IEICE Trans Commun 2003;86(6):1788–95.Suche in Google Scholar

5. Roberto J, Cruz P, Eduardo S, Henmandez P, Gomez GR. Multi-rate key management scheme for multimedia group communications. J Internet Technol 2012;13(1):67–78.Suche in Google Scholar

6. Singhal NK, Ou C, Mukherjee B. Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks. Comput Netw 2006;50(2):200–6.10.1016/j.comnet.2005.05.024Suche in Google Scholar

7. Huang S, Ma S, Wang S, Liu HL. Shared-link path protection scheme based on network coding. J Chongqing Univ Posts Telecommun 2012;24(5):631–8.Suche in Google Scholar

8. Zhang F, Zhong WD, Jin Y. Optimizations of p-cycle-based protection of optical multicast sessions. J Lightwave Technol 2008;26(19):3298–306.10.1109/JLT.2008.925678Suche in Google Scholar

9. Panayiotou T, Ellinas G, Antoniades N. Segment-based protection of multicast connections in metropolitan area optical networks with quality-of-transmission considerations. J Opt Commun Netw 2012;4(9):692–702.10.1364/JOCN.4.000692Suche in Google Scholar

10. Huang S, Wang Y, Liu HL, Qin L. Multi-source multi-core routing algorithm based on network coding in optical multicast network. J Chongqing Univ Posts Telecommun 2014;26(2):143–9.Suche in Google Scholar

11. Rahman TE. Protection of multicast sessions in WDM mesh optical networks. Optical fiber communication conference United states: Anaheim, CA. March 6-March 11, 2005:265–7.10.1109/OFC.2005.192653Suche in Google Scholar

12. Feng T, Lu R, Hang W. Intelligent p-cycle protection for dynamic multicast sessions in WDM networks. J Opt Commun Netw 2010;2(7):389–99.10.1364/JOCN.2.000389Suche in Google Scholar

13. Monti P, Muhammad A, Cerutti I, Cavdar C, Wosinska L, Castoldi P, et al. Energy-efficient lightpath provisioning in a static WDM network with dedicated path protection. Proc. ICTON, Sweden: Stockholm, June 26-June 30, 2011:457–65.10.1109/ICTON.2011.5971042Suche in Google Scholar

14. He R, Lin B. Dynamic power-aware shared path protection algorithms in WDM mesh networks. J Commun 2013;8(1):55–65.10.12720/jcm.8.1.55-65Suche in Google Scholar

15. Yu C, Liu Y, Hou W, Yu Y, Wu J, Jiang P. A new green multicast grooming protection algorithm in WDM optical networks. Optiks 2014;125(2):657–62.10.1016/j.ijleo.2013.07.073Suche in Google Scholar

16. Ahlswede R, Cai N, Li SYR, Yeung RW. Network information flow. IEEE Trans Inf Theory 2000;46(4):1204–16.10.1109/18.850663Suche in Google Scholar

17. Koetter R, Medard M. An algebraic approach to network coding. IEEE/ACM Trans Netw 2003;11(5):782–95.10.1109/ISIT.2001.935967Suche in Google Scholar

18. Manley ED, Deogun JS, Xu L, Alexander DR. All-optical network coding. IEEE/OSA J Opt Commun Netw 2010;2(4):175–91.10.1364/JOCN.2.000175Suche in Google Scholar

19. Jirattigalachote A, Cavdar C, Monti P, Wosinska L, Tzanakaki A. Dynamic provisioning strategies for energy efficient WDM networks with dedicated path protection. Opt Switch Netw 2011;8(3):201–13.10.1016/j.osn.2011.03.008Suche in Google Scholar

20. Idzikowski F, Orlowski S, Raack C, Woesner H, Wolisz A. Saving energy in IP-over-WDM networks by switching off line cards in low-demand scenarios. Optical Network Design and Modeling (ONDM), Japan: Kyoto, Jan 31-Feb 3, 2010:1–6.10.1109/ONDM.2010.5431569Suche in Google Scholar

21. Wu Y, Chiaraviglio L, Mellia M, Neri F. Power-aware routing and wavelength assignment in optical networks. 35th European Conference on Optical Communication (ECOC’09), Austria: Vienna, Sep 20-24, 2009:1–2.Suche in Google Scholar

Received: 2015-7-9
Accepted: 2016-6-6
Published Online: 2016-6-23
Published in Print: 2017-8-28

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Gain Saturation Analysis of Raman–Fiber Optical Parametric Hybrid Amplifier
  4. Investigation of 16 × 10 Gbps DWDM System Based on Optimized Semiconductor Optical Amplifier
  5. A Coherent Optical OFDM Communication System with Nonlinear Distortion Compensation in the Channel and Receiver
  6. Detectors
  7. Evaluation of FSO Link Using Array of Photodetectors
  8. Devices
  9. Design of a Directional Coupler based on UV-Induced LiNbO3 Waveguides
  10. Fibers
  11. A Novel Demultiplexing Design for Coarse WDM: Exploiting Material Dispersion
  12. Integrated optics
  13. Exact Dispersion Study of an Asymmetric Thin Planar Slab Dielectric Waveguide without Computing d2βdk2 Numerically
  14. Networks
  15. Performance of Bus and Ring Network Topologies Based on SOA Bias Current
  16. A Energy-Saving Path-Shared Protection Based on Diversity Network Coding for Multi-rate Multicast in WDM Mesh Networks
  17. Receiver
  18. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions
  19. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions
  20. Systems
  21. Performance Evaluation and Nonlinear Mitigation through DQPSK Modulation in 32 × 40 Gbps Long-Haul DWDM Systems
  22. Numerical Analysis of the Performance of Millimeter-Wave RoF-Based Cellular Backhaul Links
  23. Impact of XPM Crosstalk on SCM-Based RoF Systems
  24. Simulative Investigation on the Effect of Different Parameters on the Performance of IsOWC System
  25. Application of Optical Frequency Comb in High-Capacity Long Distance Optical Communication for China-Pakistan Economic Corridor
  26. Theory
  27. Investigating and Modeling the Effect of Laser Intensity and Nonlinear Regime of the Fiber on the Optical Link
  28. Performance of Different OCDMA Codes with FWM and XPM Nonlinear Effects
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2015-0061/html
Button zum nach oben scrollen