Startseite Novel Scheme of Carrier Tri-reuse and Distribution Fiber Protection Based on Round Shift Method in Optical Access Network
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Novel Scheme of Carrier Tri-reuse and Distribution Fiber Protection Based on Round Shift Method in Optical Access Network

  • Haibin Chen , Chaoqin Gan EMAIL logo , Maojun Yin und Cuiping Ni
Veröffentlicht/Copyright: 14. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel architecture of optical access network based on round shift method is proposed. Round shift method is composed by round service mode of carriers and cycle characteristic of 2×N arrayed waveguide grating (AWG). By utilizing the round service mode, every carrier is tri-reused to provide service for three different optical network units. Besides, in remote node, the 2×3N AWG can be replaced by three 2×N AWGs and AWGs’ channel spacing is increased. So, the demand on RN’s AWGs is decreased. Furthermore, based on the cycle characteristic of 2×N AWG, a 1+1 protection scheme is presented to provide independent protection for distribution fibers. Simulation and analysis show the proposed scheme works well.

PACS.: 42.79.Sz

Funding statement: Funding: This work was supported by the Programs of Natural Science Foundation of China (No.61132004 and 61275073), Shanghai Science and Technology Development Funds (No. 13JC1402600 and 11510500500), Shanghai Leading Academic Discipline Project and STCSM (No.S30108 and 08DZ2231100).

References

1. FanH, LiJ, XiaohanS. Cost-effective scalable and robust star-cross-bus PON architecture using a centrally controlled hybrid restoration mechanism. J Opt Commun Netw2013;5:73040.10.1364/JOCN.5.000730Suche in Google Scholar

2. BockC, LazaroJA, PratJ. Extension of TDM-PON standards to a single-fiber ring access network featuring resilience and service overlay. J Lightwave Technol2007;25:141621.10.1109/JLT.2007.896792Suche in Google Scholar

3. YehCH, ChowCW, HuangSP, SungJY, LiuYL, PanCL. Ring-based WDM access network providing both Rayleigh backscattering noise mitigation and fiber-fault protection. J Lightwave Technol2012;30:321118.10.1109/JLT.2012.2214374Suche in Google Scholar

4. NguyenQT, BesnardP, BramerieL, ShenA, KazmierskiC, ChanlouP, et al. Bidirectional 2.5-Gb/S WDM-PON using FP-LDs wavelength-locked by a multiple-wavelength seeding source based on a mode-locked laser. Photonics Technol Lett2010;22:7335.10.1109/LPT.2010.2044569Suche in Google Scholar

5. ZhangF, ZhongW-D, XuZ, ChengTH, MichieC, IvanA. A broadcast/multicast-capable carrier-reuse WDM-PON. J Lightwave Technol2011;29:227684.10.1109/JLT.2011.2158986Suche in Google Scholar

6. ZhuM, ZhongW-D, XiaoS. A survivable colorless wavelength division multiplexed passive optical network with centrally controlled intelligent protection scheme. J Opt Commun Netw2012;4:7418.10.1364/JOCN.4.000741Suche in Google Scholar

7. YehCH, ChowCW, LinYH, HuangPY. Self-protection architecture in C+L bands WDM-PON system. In: 2011 16th OptoeElectronics and Communications Conference (OECC), Taiwan, July 2011:525–6.Suche in Google Scholar

8. LeeK, MunS-G, LeeC-H, LeeSB. Reliable wavelength-division-multiplexed passive optical network using novel protection scheme. Photonics Technol Lett2008;20:67981.10.1109/LPT.2008.919445Suche in Google Scholar

9. ChiY-C, LinC-J, LinS-Y, LinG-R. The reuse of downstream carrier data erased by self-feedback SOA for bidirectional DWDM-PON transmission. J Lightwave Technol2012;30:3096102.10.1109/JLT.2012.2210698Suche in Google Scholar

10. ChiuchiarelliA, ProiettiR, PresiM, ChoudhuryP, ContestabileG, CiaramellaE. Symmetric 10 Gbit/s WDM-PON based on cross-wavelength reuse to avoid Rayleigh backscattering and maximise band usage. Electron Lett2009;45:13435.10.1049/el.2009.2023Suche in Google Scholar

11. TakadaK, AbeM, ShibataT, OkamotoK. 1-GHz-spaced 16-channel arrayed-waveguide grating for a wavelength reference standard in DWDM network systems. J Lightwave Technol2002;20:8503.10.1109/JLT.2002.1007939Suche in Google Scholar

12. YeT, LeeTT, HuW. A study of modular AWGs for large-scale optical switching systems. J Lightwave Technol2012;30:212533.10.1109/JLT.2012.2193382Suche in Google Scholar

13. XuQ, RastegarfarH, Ben M‘SallemY, Leon-GarciaA, LaRochelleS, RuschLA. Analysis of large-scale multi-stage all-optical packet switching routers. J Opt Commun Netw2012;4:41225.10.1364/JOCN.4.000412Suche in Google Scholar

14. XuZ, WenYJ, ZhongW-D, AttygalleM, ChengXF, WangY, et al. Carrier-reuse WDM-PON using a shared delay interferometer for separating carriers and subcarriers. Photonics Technol Lett2007;19:8379.10.1109/LPT.2007.897298Suche in Google Scholar

15. AkanbiO, YuJ, ChangG-K.A new scheme for bidirectional WDM-PON using upstream and downstream channels generated by optical carrier suppression and separation technique. Photonics Technol Lett2006;18:3402.10.1109/LPT.2005.861975Suche in Google Scholar

16. MaX, GanC. Novel scheme enabling broadcast signal transmission in WDM passive optical network. Chin Opt Lett2011:040602-1040602-4.10.3788/COL201109.040602Suche in Google Scholar

17. SueC-C. 1:N protection scheme for AWG-based WDM PONs. In: IEEE Global Telecommunications Conference2006:15.10.1109/GLOCOM.2006.358Suche in Google Scholar

18. ChengX, YeoY-K, ShaoX, WangY, YaohuiB: A novel distributed self-protection scheme for WDM-PON using a circulator-AWG based wavelength router. In: 5th International ICST Conference on Communications and Networking in China, 2010:1–4.10.4108/chinacom.2010.92Suche in Google Scholar

Received: 2014-6-29
Accepted: 2015-2-10
Published Online: 2015-3-14
Published in Print: 2015-6-1

©2015 by De Gruyter

Heruntergeladen am 11.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2014-0051/html
Button zum nach oben scrollen