Startseite How to prove optimal convergence rates for adaptive least-squares finite element methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

How to prove optimal convergence rates for adaptive least-squares finite element methods

  • Philipp Bringmann EMAIL logo
Veröffentlicht/Copyright: 5. April 2022

Abstract

The convergence analysis with rates for adaptive least-squares finite element methods (ALSFEMs) combines arguments from the a posteriori analysis of conforming and mixed finite element schemes. This paper provides an overview of the key arguments for the verification of the axioms of adaptivity for an ALSFEM for the solution of a linear model problem. The formulation at hand allows for the simultaneous analysis of first-order systems of the Poisson model problem, the Stokes equations, and the linear elasticity equations. Following [Carstensen and Park, SIAM J. Numer. Anal. 53(1), 2015], the adaptive algorithm is driven by an alternative residual-based error estimator with exact solve and includes a separate marking strategy for quasi-optimal data resolution of the right-hand side. This presentation covers conforming discretisations for an arbitrary polynomial degree and mixed homogeneous boundary conditions.

JEL Classification: 65N12; 65N15; 65N30; 65N50; 65Y20

Funding statement: This work was supported by the Deutsche Forschungsgemeinschaft Priority Program 1748 ‘Reliable Simulation Techniques in Solid Mechanics. Development of Non-standard Discretization Methods, Mechanical and Mathematical Analysis’ within the project ‘Foundation and application of generalized mixed FEM towards nonlinear problems in solid mechanics’ (CA 151/22-1 and CA 151/22-2), by the Berlin Mathematical School, and by the Austrian Science Fund (FWF) through the project ‘Computational nonlinear PDEs’ (grant P33216).

References

[1] J. H. Adler, T. A. Manteuffel, S. F. McCormick, J.W. Nolting, J.W. Ruge, and L. Tang, Efficiency based adaptive local refinement for first-order system least-squares formulations, SIAM J. Sci. Comput. 33 (2011), No. 1, 1–24.10.1137/100786897Suche in Google Scholar

[2] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), No. 9, 823–864.10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-BSuche in Google Scholar

[3] M. Aurada, M. Feischl, J. Kemetmüller, M. Page, and D. Praetorius, Each H1/2-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd, ESAIM Math. Model. Numer. Anal. 47 (2013), No. 4, 1207–1235.10.1051/m2an/2013069Suche in Google Scholar

[4] S. Bauer, P. Neff, D. Pauly, and G. Starke, Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions, ESAIM Control Optim. Calc. Var. 22 (2016), No. 1, 112–133.10.1051/cocv/2014068Suche in Google Scholar

[5] S. Bauer, D. Pauly, and M. Schomburg, The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions, SIAM J. Math. Anal. 48 (2016), No. 4, 2912–2943.10.1137/16M1065951Suche in Google Scholar

[6] M. Berndt, T. A. Manteuffel, and S. F. McCormick, Local error estimates and adaptive refinement for first-order system least squares (FOSLS), Electron. Trans. Numer. Anal. 6 (1997), No. Dec., 35–43.Suche in Google Scholar

[7] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), No. 2, 219– 268.10.21236/ADA640658Suche in Google Scholar

[8] P. Binev and R. DeVore, Fast computation in adaptive tree approximation, Numer. Math. 97 (2004), No. 2, 193–217.10.21236/ADA640671Suche in Google Scholar

[9] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Applied Mathematical Sciences, Vol. 166, Springer, New York, 2009.10.1007/b13382Suche in Google Scholar

[10] J. H. Bramble and A. H. Schatz, Least squares methods for 2mth order elliptic boundary-value problems, Math. Comp. 25 (1971), 1–32.10.2307/2005129Suche in Google Scholar

[11] J. H. Bramble and A. H. Schatz, Rayleigh–Ritz–Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math. 23 (1970), 653–675.10.1002/cpa.3160230408Suche in Google Scholar

[12] P. Bringmann and C. Carstensen, An adaptive least-squares FEM for the Stokes equations with optimal convergence rates, Numer. Math. 135 (2017), No. 2, 459–492.10.1007/s00211-016-0806-1Suche in Google Scholar

[13] P. Bringmann and C. Carstensen, h-adaptive least-squares finite element methods for the 2D Stokes equations of any order with optimal convergence rates, Comput. Math. Appl. 74 (2017), No. 8, 1923–1939.10.1016/j.camwa.2017.02.019Suche in Google Scholar

[14] P. Bringmann, C. Carstensen, and G. Starke, An adaptive least-squares FEM for linear elasticity with optimal convergence rates, SIAM J. Numer. Anal. 56 (2018), No. 1, 428–447.10.1137/16M1083797Suche in Google Scholar

[15] P. Bringmann, Adaptive least-squares finite element method with optimal convergence rates, PhD thesis, Humboldt-Universität zu Berlin, Berlin, 2021.10.1137/16M1083797Suche in Google Scholar

[16] P. Bringmann, C. Carstensen, and N. T. Tran, Adaptive least-squares, discontinuous Petrov–Galerkin, and hybrid high-order methods, In: Non-standard Discretisation Methods in Solid Mechanics, Springer, 2022, pp. 107–147.10.1007/978-3-030-92672-4_5Suche in Google Scholar

[17] Z. Cai, R. Falgout, and S. Zhang, Div first-order system LL* (FOSLL* for second-order elliptic partial differential equations, SIAM J. Numer. Anal. 53 (2015), No. 1, 405–420.10.1137/140971890Suche in Google Scholar

[18] Z. Cai, B. Lee, and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems, SIAM J. Numer. Anal. 42 (2004), No. 2, 843–859.10.1137/S0036142903422673Suche in Google Scholar

[19] Z. Cai and G. Starke, Least-squares methods for linear elasticity, SIAM J. Numer. Anal. 42 (2004), No. 2, 826–842.10.1137/S0036142902418357Suche in Google Scholar

[20] C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014), No. 6, 1195–1253.10.1016/j.camwa.2013.12.003Suche in Google Scholar PubMed PubMed Central

[21] C. Carstensen and H. Rabus, Axioms of adaptivity with separate marking for data resolution, SIAM J. Numer. Anal. 55 (2017), No. 6, 2644–2665.10.1137/16M1068050Suche in Google Scholar

[22] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comput. 66 (1997), No. 218, 465–476.10.1090/S0025-5718-97-00837-5Suche in Google Scholar

[23] C. Carstensen, Collective marking for adaptive least-squares finite element methods with optimal rates, Math. Comp. 89 (2020), No. 321, 89–103.10.1090/mcom/3474Suche in Google Scholar

[24] C. Carstensen and F. Hellwig, Constants in discrete Poincaré and Friedrichs inequalities and discrete quasi-interpolation, Comput. Methods Appl. Math. 18 (2018), No. 3, 433–450.10.1515/cmam-2017-0044Suche in Google Scholar

[25] C. Carstensen and R. Ma, Collective marking for arbitrary order adaptive least-squares finite element methods with optimal rates, Comput. Math. Appl. 95 (2021), 271–281.10.1016/j.camwa.2020.12.005Suche in Google Scholar

[26] C. Carstensen and E.-J. Park, Convergence and optimality of adaptive least squares finite element methods, SIAM J. Numer. Anal. 53 (2015), No. 1, 43–62.10.1137/130949634Suche in Google Scholar

[27] C. Carstensen, E.-J. Park, and P. Bringmann, Convergence of natural adaptive least squares finite element methods, Numer. Math. 136 (2017), No. 4, 1097–1115.10.1007/s00211-017-0866-xSuche in Google Scholar

[28] C. Carstensen and H. Rabus, An optimal adaptive mixed finite element method, Math. Comp. 80 (2011), No. 274, 649–667.10.1090/S0025-5718-2010-02397-XSuche in Google Scholar

[29] C. Carstensen and J. Storn, Asymptotic exactness of the least-squares finite element residual, SIAM J. Numer. Anal. 56 (2018), No. 4, 2008–2028.10.1137/17M1125972Suche in Google Scholar

[30] J. M. Cascon, R. H. Nochetto, and K. G. Siebert, Design and convergence of AFEM in H(div), Math. Models Methods Appl. Sci. 17 (2007), No. 11, 1849–1881.10.1142/S0218202507002492Suche in Google Scholar

[31] A. Ern, T. Gudi, I. Smears, and M. Vohralík, Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div), IMA J. Numer. Anal. 42 (2022), No. 2, 1023–1049.10.1093/imanum/draa103Suche in Google Scholar

[32] T. Führer and D. Praetorius, A short note on plain convergence of adaptive least-squares finite element methods, Comput. Math. Appl. 80 (2020), No. 6, 1619–1632.10.1016/j.camwa.2020.07.022Suche in Google Scholar

[33] G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko, Rate optimality of adaptive finite element methods with respect to overall computational costs, Math. Comp. 90 (2021), No. 331, 2011–2040.10.1090/mcom/3654Suche in Google Scholar

[34] G. Gantner and R. Stevenson, Further results on a space-time FOSLS formulation of parabolic PDEs, ESAIM Math. Model. Numer. Anal. 55 (2021), No. 1, 283–299.10.1051/m2an/2020084Suche in Google Scholar

[35] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag, Berlin, 1986.10.1007/978-3-642-61623-5Suche in Google Scholar

[36] J. Gopalakrishnan and W. Qiu, Partial expansion of a Lipschitz domain and some applications, Front. Math. China 7 (2012), No. 2, 249–272.10.1007/s11464-012-0189-2Suche in Google Scholar

[37] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics, Vol. 69, SIAM, Philadelphia, PA, 2011, Reprint of the 1985 original [MR0775683], with a foreword by S. C. Brenner.10.1137/1.9781611972030Suche in Google Scholar

[38] R. Hiptmair and C. Pechstein, Discrete Regular Decompositions of Tetrahedral Discrete 1-Forms, Seminar for Applied Mathematics, ETH Zürich, Report No. 2017-47, Switzerland, 2017.Suche in Google Scholar

[39] D. C. Jespersen, A least squares decomposition method for solving elliptic equations, Math. Comp. 31 (1977), No. 140, 873–880.10.1090/S0025-5718-1977-0461948-0Suche in Google Scholar

[40] M.W. Licht, Smoothed projections and mixed boundary conditions, Math. Comp. 88 (2019), No. 316, 607–635.10.1090/mcom/3330Suche in Google Scholar

[41] J.-C. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980), No. 3, 315–341.10.1007/BF01396415Suche in Google Scholar

[42] C.-M. Pfeiler and D. Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem, Math. Comp. 89 (2020), No. 326, 2735–2752.10.1090/mcom/3553Suche in Google Scholar

[43] H. Rabus, On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples, PhD thesis, Humboldt-Universität zu Berlin, Berlin, 2014.Suche in Google Scholar

[44] J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. 77 (2008), No. 262, 633–649.10.1090/S0025-5718-07-02030-3Suche in Google Scholar

[45] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), No. 190, 483–493.10.1090/S0025-5718-1990-1011446-7Suche in Google Scholar

[46] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), No. 2, 245–269.10.1007/s10208-005-0183-0Suche in Google Scholar

[47] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), No. 261, 227–241.10.1090/S0025-5718-07-01959-XSuche in Google Scholar

[48] J. Storn, Topics in least-squares and discontinuous Petrov–Galerkin finite element analysis, PhD thesis, Humboldt-Universität zu Berlin, Berlin, 2019.Suche in Google Scholar

[49] R. Verfürth, A posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.10.1093/acprof:oso/9780199679423.001.0001Suche in Google Scholar

[50] L. Zhong, L. Chen, S. Shu, G. Wittum, and J. Xu, Convergence and optimality of adaptive edge FEMs for time-harmonic Maxwell equations, Math. Comp. 81 (2012), No. 278, 623–642.10.1090/S0025-5718-2011-02544-5Suche in Google Scholar

Received: 2021-09-26
Revised: 2022-04-08
Accepted: 2022-04-10
Published Online: 2022-04-05
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/ Boston, Germany

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2021-0116/html
Button zum nach oben scrollen