Startseite Regularity results and numerical solution by the discontinuous Galerkin method to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Regularity results and numerical solution by the discontinuous Galerkin method to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder

  • Monika Balázsová EMAIL logo , Miloslav Feistauer und Anna-Margarete Sändig
Veröffentlicht/Copyright: 25. Juni 2022

Abstract

In this note we consider a parabolic evolution equation in a polygonal space-time cylinder. We show, that the elliptic part is given by a m-accretive mapping from Lq(Ω) → Lq(Ω). Therefore we can apply the theory of nonlinear semigroups in Banach spaces in order to get regularity results in time and space.

The second part of the paper deals with the numerical solution of the problem. It is dedicated to the application of the space-time discontinuous Galerkin method (STDGM). It means that both in space as well as in time discontinuous piecewise polynomial approximations of the solution are used. We concentrate to the theoretical analysis of the error estimation.

JEL Classification: 65N15; 65N30

Funding statement: The research of M. Balázsová was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the OP RDE grant No. CZ.02.1.01/0.0/0.0/16 019/0000778/Centre for Advanced Applied Sciences, group THEORY. The research of M. Feistauer was supported by the grant No. 20-01074 of the Czech Science Foundation.

References

[1] M. Balázsová, M. Feistauer, M. Hadrava, and A. Kosík, On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection–diffusion problems, J. Numer. Math. 23 (2015), 211–233.10.1515/jnma-2015-0014Suche in Google Scholar

[2] J. Česenek and M. Feistauer, Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion. SIAM J. Numer. Anal. 50 (2012), 1181–1206.10.1137/110828903Suche in Google Scholar

[3] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1979.Suche in Google Scholar

[4] P. Deuflhard, Newton Methods for Nonlinear Problems, Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, Vol. 35, Springer, Berlin, 2004.Suche in Google Scholar

[5] V. Dolejší and M. Feistauer, Discontinuous Galerkin method – Analysis and applications to compressible flow, Springer, Cham, 2015.10.1007/978-3-319-19267-3Suche in Google Scholar

[6] M. Dumbser, Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations, Comput. Fluids 39 (2010), No. 1, 60–76.10.1016/j.compfluid.2009.07.003Suche in Google Scholar

[7] M. Feistauer, V. Kučera, K. Najzar, and J. Prokopová, Analysis of space-time discontinuous Galerkin method for nonlinear convection–diffusion problems, Numer. Math. 117 (2011), 251–288.10.1007/s00211-010-0348-xSuche in Google Scholar

[8] M. Feistauer, V. Kučera, and J. Prokopová, Discontinuous Galerkin solution of compressible flow in time-dependent domains, Math. Comput. Simul. 80 (2010), 1612–1623.10.1016/j.matcom.2009.01.020Suche in Google Scholar

[9] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 2006.10.1016/j.matcom.2009.01.020Suche in Google Scholar

[10] J. M. Arrieta, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differ. Equ. 156 (1999), 376–406.10.1006/jdeq.1998.3612Suche in Google Scholar

[11] H. Brézis, Équations et inéquations non-linéares dans les espaces vectoriel en dualité, Ann. Int. Fourier 18 (1968), 115–176.10.5802/aif.280Suche in Google Scholar

[12] M. Dobrowolski, Angewandte Funktionalanalysis (8. Auflage), Springer, Berlin–Heidelberg, 2010.10.1007/978-3-642-15269-6Suche in Google Scholar

[13] J. Douglas and T. Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer. Math. 20 (1973), 213–237.10.1007/BF01436565Suche in Google Scholar

[14] A. El Hachimi and A. Jamea, Nonlinear parabolic problems with Neumann-type boundary conditions and L1-data, Electron. J. Qual. Theory Differ. Equ. 27 (2007), 1–22.10.14232/ejqtde.2007.1.27Suche in Google Scholar

[15] M. Feistauer, K. Najzar, and V. Sobotíková, Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions, Numer. Funct. Anal. Optim. 20 (1999), 835–851.10.1080/01630569908816927Suche in Google Scholar

[16] M. Feistauer, F. Roskovec, and A.-M. Sändig, Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon, IMA J. Numer. Anal. 39 (2019), 423–453.10.1093/imanum/drx070Suche in Google Scholar

[17] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc.: Japan 19 (1967), 508–520.10.2969/jmsj/01940508Suche in Google Scholar

[18] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, In: Nonlinear Functional Analysis (Ed. F. E. Browder), Proc. Symp. Pure Math. XVIII, Part I, 1968, pp. 138–161.10.1090/pspum/018.1/0271782Suche in Google Scholar

[19] A. Kufner, O. John, and S. Fučík, Function Spaces, Noordhoff International Publishing, 1977.10.1090/pspum/018.1/0271782Suche in Google Scholar

[20] J. Rehberg, Quasilinear parabolic equations in Lp In: Progress in Nonlinear Differential Equations and Their Applications, Vol.64, Birkhäuser Verlag, Basel/Switzerland, 2005, pp. 413–419.10.1007/3-7643-7385-7_24Suche in Google Scholar

[21] T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser Verlag, 2005.10.1007/3-7643-7385-7_24Suche in Google Scholar

[22] M. Růžička, Nichtlineare Funktionalanalysis, Springer, Berlin, 2004.Suche in Google Scholar

[23] A.-M. Sändig, Regularity results to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder. Preprint 2020-001, Stuttgarter Mathematische Berichte, 2020.Suche in Google Scholar

Received: 2021-09-21
Revised: 2022-04-01
Accepted: 2022-06-08
Published Online: 2022-06-25
Published in Print: 2023-03-08

© 2023 Walter de Gruyter GmbH, Berlin/ Boston, Germany

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2021-0113/html
Button zum nach oben scrollen