Startseite On generalized binomial laws to evaluate finite element accuracy: preliminary probabilistic results for adaptive mesh refinement
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On generalized binomial laws to evaluate finite element accuracy: preliminary probabilistic results for adaptive mesh refinement

  • Joël Chaskalovic und Franck Assous EMAIL logo
Veröffentlicht/Copyright: 13. Juni 2020

Abstract

The aim of this paper is to provide new perspectives on the relative finite elements accuracy. Starting from a geometrical interpretation of the error estimate which can be deduced from Bramble–Hilbert lemma, we derive a probability law that evaluates the relative accuracy, considered as a random variable, between two finite elements Pk and Pm, k < m. We extend this probability law to get a cumulated probabilistic law for two main applications. The first one concerns a family of meshes, the second one is dedicated to a sequence of simplexes constituting a given mesh. Both of these applications could be considered as a first step toward application for adaptive mesh refinement with probabilistic methods.

MSC 2010: 65Gxx

Acknowledgment

The authors want to warmly dedicate this research to pay homage to the memory of Professors André Avez and Gérard Tronel who largely promote the passion of research and teaching in mathematics.

References

[1] F. Assous and J. Chaskalovic, Data mining techniques for scientific computing: Application to asymptotic paraxial approximations to model ultra-relativistic particles, J. Comput. Phys. 230, (2011), 4811–4827.10.1016/j.jcp.2011.03.005Suche in Google Scholar

[2] J. Chaskalovic, Mathematical and numerical methods for partial differential equations, Springer Verlag, 2013.10.1007/978-3-319-03563-5Suche in Google Scholar

[3] J. Chaskalovic and F. Assous, A new probabilistic interpretation of Bramble–Hilbert lemma, Computational Methods in Applied Mathematics20 (2018), No.1, 79–87.10.1515/cmam-2018-0270Suche in Google Scholar

[4] J. Chaskalovic and F. Assous, A new probabilistic interpretation of Bramble–Hilbert lemma, October 2018. arXiv: 1803.09547 [math.NA].10.1515/cmam-2018-0270Suche in Google Scholar

[5] J. Chaskalovic and F. Assous, Asymptotic relation between probabilistic distributions which quantify the relative accuracy between two finite elements, October 2018. arXiv: 1803.09552 [math.NA].Suche in Google Scholar

[6] P. G. Ciarlet, Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, Vol. II (Eds. P. G. Ciarlet and J. L. Lions), North Holland, Amsterdam, 1991.10.1016/S1570-8659(05)80039-0Suche in Google Scholar

[7] P. A. Raviart et J. M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles, Masson, Paris, 1982.Suche in Google Scholar

[8] J. Stewart, Multivariable Calculus, Cengage Learning Publisher, 2008.Suche in Google Scholar

Received: 2019-01-03
Revised: 2019-12-25
Accepted: 2020-02-24
Published Online: 2020-06-13
Published in Print: 2020-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2019-0001/pdf?lang=de
Button zum nach oben scrollen