Startseite The Fourier-finite-element method for Poisson’s equation in three-dimensional axisymmetric domains with edges: Computing the edge flux intensity functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Fourier-finite-element method for Poisson’s equation in three-dimensional axisymmetric domains with edges: Computing the edge flux intensity functions

  • Boniface Nkemzi EMAIL logo und Michael Jung
Veröffentlicht/Copyright: 29. Juni 2019

Abstract

In [Nkemzi and Jung, 2013] explicit extraction formulas for the computation of the edge flux intensity functions for the Laplacian at axisymmetric edges are presented. The present paper proposes a new adaptation for the Fourier-finite-element method for efficient numerical treatment of boundary value problems for the Poisson equation in axisymmetric domains Ω̂ ⊂ ℝ3 with edges. The novelty of the method is the use of the explicit extraction formulas for the edge flux intensity functions to define a postprocessing procedure of the finite element solutions of the reduced boundary value problems on the two-dimensional meridian of Ω̂. A priori error estimates show that the postprocessing finite element strategy exhibits optimal rate of convergence on regular meshes. Numerical experiments that validate the theoretical results are presented.

JEL Classification: 35J05; 35J25; 65N30; 65N35; 65N15

Acknowledgment

This work was done while the author B. Nkemzi was visiting the University of Applied Sciences, Dresden, Germany for a short research stay. His visit was supported by the Alexander von Humboldt Foundation, Bonn, Germany in his capacity as an Alexander von Humboldt Alumnus. Boniface Nkemzi is very grateful for the support and also expresses his sincere thanks to the staff of the Faculty of Computer Science and Mathematics for their warm hospitality during his stay. Our sincere thanks go also to the anonymous reviewers who gave us very useful suggestions that led to a significant improvement of the original article.

References

[1] C. Bernardi, M. Dauge, and Y. Maday, Spectral Methods for Axisymmetric Domains. Gauthier-Villars, Paris, 1999.Suche in Google Scholar

[2] D. Braess, Finite Elemente. Springer Verlag, Berlin, 1997.10.1007/978-3-662-07233-2Suche in Google Scholar

[3] M. Chiarelli and A. Frediani, A computation of the 3-dimensional J-integral for elastic material with a view to application in fracture-mechanics. Engrg. Frac. Mech. 44 (1993), 763–788.10.1016/0013-7944(93)90205-7Suche in Google Scholar

[4] Ph. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.10.1115/1.3424474Suche in Google Scholar

[5] P. Ciarlet Jr., B. Jung, S. Kaddouri, S. Labrunie, and J. Zou, The Fourier singular complement method for the Poisson problem. Part I: prismatic domains. Numer. Math. 101 (2005), 423–450.10.1007/s00211-005-0621-6Suche in Google Scholar

[6] P. Ciarlet Jr, B. Jung, S. Kaddouri, S. Labrunie, and J. Zou, The Fourier singular complement method for the Poisson problem. Part II: axisymmetric domains. Numer. Math. 102 (2006), 583–610.10.1007/s00211-005-0664-8Suche in Google Scholar

[7] P. Clement, Approximation by finite functions using local regularization. RAIRO Modéle Math. Anal. Numér., R-2 (1975), 77–84.10.1051/m2an/197509R200771Suche in Google Scholar

[8] M. Costabel, M. Dauge, and Z. Yosibash, A quasi-dual function method for extracting edge stress intensity functions. SIAM J. Math. Anal. 35 (2004), 1177–1202.10.1137/S0036141002404863Suche in Google Scholar

[9] M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lect. Notes in Math., Vol. 1341, Springer-Verlag, Berlin–Heidelberg–New York, 1988.10.1007/BFb0086682Suche in Google Scholar

[10] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston, 1985.Suche in Google Scholar

[11] P. Grisvard, Singularities in Boundary Value Problems. Masson, Paris; Springer-Verlag, Berlin, 1992.Suche in Google Scholar

[12] B. Heinrich, Singularity functions at axisymmetric edges and their representation by Fourier series. Math. Methods Appl. Sci., 16 (1993), 837–854.10.1002/mma.1670161202Suche in Google Scholar

[13] B. Heinrich, The Fourier-finite-element method for Poisson’s equation in axisymmetric domains with edges. SIAM J. Numer. Anal. 33 (1996), 1885–1911.10.1137/S0036142994266108Suche in Google Scholar

[14] O. Huber, J. Nickel, and G. Kuhn, On the decomposition of the J-integral for 3D crack problems. Int. J. Fracture64 (1993), 339–348.10.1007/BF00017849Suche in Google Scholar

[15] M. Jung and T. Steiden, Das Multigrid-Programmsystem FEMGP zur lösung elliptischer und parabolischer Differentialgleichungen. Version 06.90, Programmdokumentation, Faultät für Mathematik TU Chemnitz, 1990.Suche in Google Scholar

[16] Y. P. Kim and J. R. Kweon, The Fourier-finite element method for the Poisson problem on a non-convex polyhedral cylinder. J. Comput. Appl. Math. 233 (2009), 951–968.10.1016/j.cam.2009.08.097Suche in Google Scholar

[17] V. A. Kondrat’ev, Singularities of solutions of the Dirichlet problem for an elliptic equation of second order in the neighbourhood of an edge. Differ. Equations13, 1411–1415 (1967).Suche in Google Scholar

[18] B. Mercier and G. Raugel, Résolution d’un problèm aux limites dans un ouvert axisymmétrique par éléments finis en r, z et series de Fourier en ϑ. R.A.I.R.O. Analyse numérique16 (1982), 405–461.10.1051/m2an/1982160404051Suche in Google Scholar

[19] B. Nkemzi, Numerische Analysis der Fourier-Finite-Elemente-Methode für die Gleichungen der Elastizitätstheorie. PhD Thesis. Tectum Verlag Marburg, 1997.Suche in Google Scholar

[20] B. Nkemzi and M. Jung, Flux intensity functions for the Laplacian at axisymmetric edges. Math. Meth. Appl. Sci. 36 (2013), 153–168.10.1002/mma.2578Suche in Google Scholar

[21] B. Nkemzi and S. Tanekou, Predictor–corrector p- and hp-finite element method for Poisson’s equation in polygonal domains. Comput. Meth. Appl. Mech. Engrg. 333 (2018), 74–93.10.1016/j.cma.2018.01.027Suche in Google Scholar

[22] N. Omer, Z. Yosibash, M. Costabel, and M. Dauge, Edge flux intensity functions in polyhedral domains and their extraction by a quasidual function method. Int. J. Fracture129 (2004), 97–130.10.1023/B:FRAC.0000045717.60837.75Suche in Google Scholar

[23] G. Strang and G. J. Fix, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, N.J., 1973.Suche in Google Scholar

[24] B. Weber, Die Fourier-Finite-Elemente-Methode fü elliptische Interfaceprobleme in axisymmetrischen Gebieten. PhD Thesis, Faculty of Mathematics, TU Chemnitz-Zwickau, 1993.Suche in Google Scholar

[25] Z. Yosibash, N. Omer, M. Costabel, and M. Dauge, Edge stress intensity functions in polyhedral domains and their extraction by a quasidual function method. Int. J. Fracture136 (2005), 37–73.10.1007/s10704-005-4245-8Suche in Google Scholar

[26] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method. Vol. 2: Solid Mechanics. Butterworth-Heinemann, Oxford, 2000.Suche in Google Scholar

Received: 2019-01-03
Revised: 2019-05-21
Accepted: 2019-06-06
Published Online: 2019-06-29
Published in Print: 2020-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2019-0002/html
Button zum nach oben scrollen