Startseite Thermodiffusion, diffusion and Soret coefficients of binary polymeric mixtures in toluene and cyclohexane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodiffusion, diffusion and Soret coefficients of binary polymeric mixtures in toluene and cyclohexane

  • Antton Sanjuan , Daniel Sommermann , Werner Köhler , Valentina Shevtsova und M. Mounir Bou-Ali EMAIL logo
Veröffentlicht/Copyright: 24. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We present the results of experimental study on measuring the thermodiffusion, molecular diffusion and Soret coefficients of polystyrene (4,880 g/mol) in the pure solvents toluene and cyclohexane at 298 K and atmospheric pressure. The experiments have been carried out for a wide range of concentrations, starting from the diluted state with 2 % polystyrene mass fraction (proposed in the DCMIX4 project) up to the semidilute regime of 20 % polystyrene mass fraction. In addition, we present a complete characterisation of the thermophysical properties of the analysed mixtures. Thermodiffusion, molecular diffusion and Soret coefficients of binary polymeric samples have been measured by combining the traditional thermogravitational column technique, the thermogravitational microcolumn and the optical beam deflection method. In toluene, the obtained experimental results are consistent with literature, showing that the magnitude of the mass transport thermoproperties decrease significantly with increasing polystyrene concentration, which is a first indication of an approaching glass transition in the concentrated regime. The results for thermodiffusion and molecular diffusion coefficients in cyclohexane as a function of concentration exhibit a similar trend. Nevertheless, the Soret coefficient seems to show an opposite tendency for the two solvents, increasing in magnitude for cyclohexane, at least up to the analysed polystyrene concentration.


Corresponding author: M. Mounir Bou-Ali, Fluid Mechanics Group, Mondragon University, Mondragon, Spain, E-mail:

Funding source: Gipuzkoa Provincial Council

Award Identifier / Grant number: Hoztikor project (2022-CIEN-000052-01)

Funding source: Basque Government, the Research Group Programme

Award Identifier / Grant number: IT1505-22, KK-2023/00041 MMASINT

Funding source: FPI grant

Award Identifier / Grant number: PRE_2022_1_0136

Funding source: Spanish Government, MICINN/FEDER

Award Identifier / Grant number: PID2020-115086GB-C33

Funding source: Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Award Identifier / Grant number: 50WM2147

  1. Research ethics: Not applicable.

  2. Author contributions: Antton Sanjuan: conceptualization, methodology, formal analysis, investigation, data curation, writing – original draft, writing – review & editing, Daniel Sommermann: conceptualization, methodology, formal analysis, investigation, data curation, writing – original draft, writing – review & editing; Werner Köhler: conceptualization, methodology, data curation, resources, writing – review & editing, supervision, project administration, funding acquisition; Valentina Shevtsova: conceptualization, methodology, data curation, resources, writing – review & editing, supervision, project administration, funding acquisition; M. Mounir Bou-Ali: conceptualization, methodology, data curation, resources, writing – review & editing, supervision, project administration, funding acquisition.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: Gipuzkoa Provincial Council under the Hoztikor project (2022-CIEN-000052-01). Basque Government, the Research Group Programme IT1505-22, KK-2023/00041 MMASINT and for funding under an FPI grant (PRE_2022_1_0136). Spanish Government, PID2020-115086GB-C33 financed by (MICINN/FEDER). Deutsches Zentrum für Luft- und Raumfahrt (DLR) (Grant No. 50WM2147).

  5. Data availability: Not applicable.

References

[1] W. Köhler and K. I. Morozov, “The soret effect in liquid mixtures – a review,” J. Non-Equilib. Thermodyn., vol. 41, no. 3, pp. 151–197, 2016. https://doi.org/10.1515/jnet-2016-0024.Suche in Google Scholar

[2] C. Ludwig, “Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen,” Sitz. Ber. Akad. Wiss. Math-Naturw, vol. 20, no. 3, p. 539, 1856.Suche in Google Scholar

[3] C. Soret, “Au Point De Vue De Sa Concentration Une Dissolution Saline Primitevement Homogéne Dont Deux Parties Sont Portées a Des Temepératures Différentes,” Arch. Sci. Phys. Nat., vol. 3, pp. 48–61, 1879.Suche in Google Scholar

[4] W. Köhler, A. Mialdun, M. M. Bou-Ali, and V. Shevtsova, “The measurement of soret and thermodiffusion coefficients in binary and ternary liquid mixtures,” Int. J. Thermophys., vol. 44, no. 9, p. 140, 2023. https://doi.org/10.1007/s10765-023-03242-x.Suche in Google Scholar

[5] J. Rauch and W. Köhler, “Collective and thermal diffusion in dilute, semidilute, and concentrated solutions of polystyrene in toluene,” J. Chem. Phys., vol. 119, no. 22, pp. 11977–11988, 2003. https://doi.org/10.1063/1.1623745.Suche in Google Scholar

[6] J. Rauch and W. Köhler, “Diffusion and thermal diffusion of semidilute to concentrated solutions of polystyrene in toluene in the vicinity of the glass transition,” Phys. Rev. Lett., vol. 88, no. 18, 2002, Art. no. 185901. https://doi.org/10.1103/physrevlett.88.185901.Suche in Google Scholar PubMed

[7] W. Köhler, C. Rosenauer, and P. Rossmanith, “Holographic grating study of mass and thermal diffusion of polystyrene/toluene solutions,” Int. J. Thermophys., vol. 16, no. 1, pp. 11–21, 1995. https://doi.org/10.1007/bf01438953.Suche in Google Scholar

[8] K. J. Zhang, M. E. Briggs, R. W. Gammon, J. V. Sengers, and J. F. Douglas, “Thermal and mass diffusion in a semidilute good solvent-polymer solution,” J. Chem. Phys., vol. 111, no. 5, pp. 2270–2282, 1999. https://doi.org/10.1063/1.479498.Suche in Google Scholar

[9] M. E. Schimpf and J. Calvin Giddings, “Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: dependence on polymer and solvent parameters,” J. Polym. Sci., Part B: Polym. Phys., vol. 27, no. 1, pp. 1317–1332, 1989. https://doi.org/10.1002/polb.1989.090270610.Suche in Google Scholar

[10] O. Ecenarro, J. A. Madariaga, J. L. Navarro, C. M. Santamaria, J. A. Carrion, and J. M. Saviron, “Thermogravitational thermal diffusion in liquid polymer solutions,” Macromolecules, vol. 27, no. 18, pp. 4968–4971, 1994. https://doi.org/10.1021/ma00096a018.Suche in Google Scholar

[11] A. Mialdun, et al., “Data quality assessment of Diffusion Coefficient Measurements in ternary mIXtures 4 (DCMIX4) experiment,” Acta Astronaut., vol. 176, no. 4, pp. 204–215, 2020. https://doi.org/10.1016/j.actaastro.2020.06.020.Suche in Google Scholar

[12] M. M. Bou-Ali, et al., “Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction,” Eur. Phys. J. E, vol. 38, no. 4, p. 30, 2015. https://doi.org/10.1140/epje/i2015-15030-7.Suche in Google Scholar PubMed

[13] A. Mialdun, I. Ryzhkov, O. Khlybov, T. Lyubimova, and V. Shevtsova, “Measurement of Soret coefficients in a ternary mixture of toluene–methanol–cyclohexane in convection-free environment,” J. Chem. Phys., vol. 148, no. 4, p. 044506, 2018. https://doi.org/10.1063/1.5017716.Suche in Google Scholar PubMed

[14] T. Triller, et al., “Thermodiffusion in ternary mixtures of water/ethanol/triethylene glycol: first report on the DCMIX3-experiments performed on the international Space station,” Microgravity Sci. Technol., vol. 30, no. 3, pp. 295–308, 2018. https://doi.org/10.1007/s12217-018-9598-5.Suche in Google Scholar

[15] A. Errarte, M. Schraml, W. Köhler, V. Shevtsova, M. M. Bou-Ali, and A. Mialdun, “Thermophysical, optical, and mass transport properties of C 60 fullerene solutions in toluene and tetralin,” J. Chem. Eng. Data, vol. 67, no. 9, pp. 2160–2173, 2022. https://doi.org/10.1021/acs.jced.2c00140.Suche in Google Scholar

[16] P. Blanco, M. Bou-Ali, J. Platten, J. Madariaga, P. Urteaga, and C. Santamaría, “Thermodiffusion coefficient for binary liquid hydrocarbon mixtures,” J. Non-Equilib. Thermodyn., vol. 32, no. 3, pp. 309–317, 2007. https://doi.org/10.1515/jnet.2007.023.Suche in Google Scholar

[17] E. Lapeira, A. Mialdun, V. Yasnou, P. Aristimuño, V. Shevtsova, and M. M. Bou-Ali, “Digital interferometry applied to thermogravitational technique,” Microgravity Sci. Technol., vol. 30, no. 5, pp. 635–641, 2018. https://doi.org/10.1007/s12217-018-9632-7.Suche in Google Scholar

[18] J. A. Madariaga, C. Santamaria, H. Barrutia, M. M. Bou-Ali, O. Ecenarro, and J. J. Valencia, “Validity limits of the FJO thermogravitational column theory: experimental and numerical analysis,” C. R. Mec., vol. 339, no. 5, pp. 292–296, 2011. https://doi.org/10.1016/j.crme.2011.03.004.Suche in Google Scholar

[19] M. Larrañaga, et al., “Contribution to the benchmark for ternary mixtures: determination of Soret coefficients by the thermogravitational and the sliding symmetric tubes techniques,” Eur. Phys. J. E, vol. 38, no. 4, p. 28, 2015. https://doi.org/10.1140/epje/i2015-15028-1.Suche in Google Scholar PubMed

[20] B. Šeta, J. Gavalda, M. M. Bou-Ali, X. Ruiz, and C. Santamaria, “Determining diffusion, thermodiffusion and Soret coefficients by the thermogravitational technique in binary mixtures with optical digital interferometry analysis,” Int. J. Heat Mass Transfer, vol. 147, no. 5, 2020, Art. no. 118935. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118935.Suche in Google Scholar

[21] J. J. Valencia, et al.., Validity Limits of the FJO Thermogravitational Column Theory, Thermal Nonequilibrium Phenomena in Fluid Mixtures. Lecture Notes in Physics, Berlin, Heidelberg, Springer, 2002.10.1007/3-540-45791-7_12Suche in Google Scholar

[22] J. J. Valencia, M. Bou-Ali, J. Platten, O. Ecenarro, J. Madariaga, and C. Santamaría, “Fickian diffusion coefficient of binary liquid mixtures in a thermogravitational column,” J. Non-Equilib. Thermodyn., vol. 32, no. 3, pp. 299–307, 2007. https://doi.org/10.1515/jnet.2007.022.Suche in Google Scholar

[23] A. Königer, H. Wunderlich, and W. Köhler, “Measurement of diffusion and thermal diffusion in ternary fluid mixtures using a two-color optical beam deflection technique,” J. Chem. Phys., vol. 132, no. 117, 2010, Art. no. 174506. https://doi.org/10.1063/1.3421547.Suche in Google Scholar PubMed

[24] M. Gebhardt and W. Köhler, “What can be learned from optical two-color diffusion and thermodiffusion experiments, on ternary fluid mixtures?” J. Chem. Phys., vol. 142, no. 2015, Art. no. 084506. https://doi.org/10.1063/1.4908538.Suche in Google Scholar PubMed

[25] A. Mialdun and V. Shevtsova, “Analysis of multi-wavelength measurements of diffusive properties via dispersion dependence of optical properties,” Appl. Opt., vol. 56, no. 3, p. 572, 2017. https://doi.org/10.1364/ao.56.000572.Suche in Google Scholar PubMed

[26] G. Wittko and W. Köhler, “Precise determination of the Soret, thermal diffusion and mass diffusion coefficients of binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphthalene by a holographic grating technique,” Philos. Mag., vol. 83, no. 17–18, pp. 1973–1987, 2033. https://doi.org/10.1080/0141861031000108213.Suche in Google Scholar

[27] D. Zapf and W. Köhler, “Thermal and solutal non-equilibrium fluctuations in a polymer solution,” J. Chem. Phys., vol. 153, no. 22, p. 224902, 2020. https://doi.org/10.1063/5.0030854.Suche in Google Scholar PubMed

Received: 2023-12-15
Accepted: 2023-05-13
Published Online: 2024-05-24
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2023-0125/html?lang=de
Button zum nach oben scrollen