Home Mass transfer at vapor-liquid interfaces of H2O + CO2 mixtures studied by molecular dynamics simulation
Article
Licensed
Unlicensed Requires Authentication

Mass transfer at vapor-liquid interfaces of H2O + CO2 mixtures studied by molecular dynamics simulation

  • Simon Stephan EMAIL logo , Vilde Bråten and Hans Hasse
Published/Copyright: July 16, 2024

Abstract

In many industrial applications as well as in nature, the mass transfer of CO2 at vapor-liquid interfaces in aqueous systems plays an important role. In this work, this process was studied on the atomistic level using non-equilibrium molecular dynamics simulations. In a first step, a molecular model of the system water + CO2 was developed that represents both bulk and interfacial equilibrium properties well. This system is characterized by a very large adsorption and enrichment of CO2 at the vapor-liquid interface. Then, non-equilibrium mass transfer simulations were carried out using a method that was developed recently: CO2 is inserted into the vapor phase of a simulation box which contains a liquid slab. Surprising effects are observed at the interface such as a net repulsion of CO2 particles from the interface and a complex time dependence of the amount of CO2 adsorbed at the interface.


Corresponding author: Simon Stephan, Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany, E-mail: 

Acknowledgments

We gratefully acknowledge fruitful discussions and the support of the simulations by Carsten Balzer, Dominik Schaefer, and Florian Fleckenstein.

  1. Research ethics: Not applicable.

  2. Author contributions: Simon Stephan: Conceptualization, Methodology (equal), Data Curation (equal), Formal Analysis (support), Visualization (equal), Writing/Original Draft Preparation, Funding Acquisition (equal); Vilde Braten: Data Curation (equal), Formal Analysis (lead), Visualization (equal), Methodology (equal), Writing/Review \& Editing (equal); Hans Hasse: Funding Acquisition (equal), Writing/Review \& Editing (equal). The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: The authors gratefully acknowledge funding for the present work by the ERC Grants ENRICO (grant agreement no. 694807) and BatCAT (grant agreement no. 101137725). The present work was conducted under the auspices of the Boltzmann-Zuse Society of Computational Molecular Engineering (BZS) and the simulations were carried out at the Regional University Computing Center Kaiserslautern (RHRK) under the grant RPTU-MTD as well as MOGON at NHR SW Mainz under the grant TU-MSG (supported by the Federal Ministry of Education and Research and the state governments).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] N. Spycher, K. Pruess, and J. Ennis-King, “CO2-H2O mixtures in the geological sequestration of CO2. i. assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar,” Geochim. Cosmochim. Acta, vol. 67, no. 16, pp. 3015–3031, 2003. https://doi.org/10.1016/s0016-7037(03)00273-4.Search in Google Scholar

[2] L. W. Diamond and N. N. Akinfiev, “Solubility of CO2 in water from -1.5 to 100 °C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling,” Fluid Phase Equilib., vol. 208, no. 1–2, pp. 265–290, 2003. https://doi.org/10.1016/s0378-3812(03)00041-4.Search in Google Scholar

[3] S. Takenouchi and G. C. Kennedy, “The binary system H2O-CO2 at high temperatures and pressures,” Am. J. Sci., vol. 262, no. 9, pp. 1055–1074, 1964. https://doi.org/10.2475/ajs.262.9.1055.Search in Google Scholar

[4] R. Hellmann, “Cross second virial coefficient and dilute gas transport properties of the (H2O -CO2) system from first-principles calculations,” Fluid Phase Equilib., vol. 485, pp. 251–263, 2019. https://doi.org/10.1016/j.fluid.2018.11.033.Search in Google Scholar

[5] F. Munczak and M. Sedlacek, “The influence of water vapour on the viscosity of He, Ar, N2 and CO2 at 30°C,” Physica, vol. 46, no. 1, pp. 1–7, 1970. https://doi.org/10.1016/0031-8914(70)90111-4.Search in Google Scholar

[6] H. Jiang, I. G. Economou, and A. Z. Panagiotopoulos, “Molecular modeling of thermodynamic and transport properties for CO2 and aqueous brines,” Acc. Chem. Res., vol. 50, no. 4, pp. 751–758, 2017. https://doi.org/10.1021/acs.accounts.6b00632.Search in Google Scholar PubMed

[7] Y. T. F. Chow, et al.., “Interfacial tensions of systems comprising water, carbon dioxide and diluent gases at high pressures: experimental measurements and modelling with SAFT-VR Mie and square-gradient theory,” Fluid Phase Equilib., vol. 407, pp. 159–176, 2016. https://doi.org/10.1016/j.fluid.2015.07.026.Search in Google Scholar

[8] E. A. Müller and A. Mejía, “Resolving discrepancies in the measurements of the interfacial tension for the CO2 + H2O mixture by computer simulation,” J. Phys. Chem., vol. 5, no. 7, pp. 1267–1271, 2014. https://doi.org/10.1021/jz500417w.Search in Google Scholar PubMed

[9] J. M. Garrido, H. Quinteros-Lama, J. M. Míguez, F. J. Blas, and M. M. Piñeiro, “On the physical insight into the barotropic effect in the interfacial behavior for the H2O + CO2 mixture,” J. Phys. Chem. C, vol. 123, no. 46, pp. 28123–28130, 2019. https://doi.org/10.1021/acs.jpcc.9b07356.Search in Google Scholar

[10] M. Shiga, T. Morishita, and M. Sorai, “Interfacial tension of carbon dioxide – water under conditions of co2 geological storage and enhanced geothermal systems: a molecular dynamics study on the effect of temperature,” Fuel, vol. 337, 2023, Art. no. 127219. https://doi.org/10.1016/j.fuel.2022.127219.Search in Google Scholar

[11] C. Zhang and M. Wang, “Co2/brine interfacial tension for geological co2 storage: a systematic review,” J. Pet. Sci. Eng., vol. 220, 2023, Art. no. 111154. https://doi.org/10.1016/j.petrol.2022.111154.Search in Google Scholar

[12] T. Lafitte, B. Mendiboure, M. M. Piñeiro, D. Bessières, and C. Miqueu, “Interfacial properties of water/CO2: a comprehensive description through a gradient theory SAFT-VR Mie approach,” J. Phys. Chem. B, vol. 114, no. 34, pp. 11110–11116, 2010. https://doi.org/10.1021/jp103292e.Search in Google Scholar PubMed

[13] O. G. Niño-Amézquita, D. van Putten, and S. Enders, “Phase equilibrium and interfacial properties of water+CO2 mixtures,” Fluid Phase Equilib., vol. 332, pp. 40–47, 2012. https://doi.org/10.1016/j.fluid.2012.06.018.Search in Google Scholar

[14] C. Chen, W. Hu, W. Li, and Y. Song, “Model comparison of the CH4/CO2/water system in predicting dynamic and interfacial properties,” J. Chem. Eng. Data, vol. 64, no. 6, pp. 2464–2474, 2019. https://doi.org/10.1021/acs.jced.9b00006.Search in Google Scholar

[15] P. H. van Konynenburg and R. L. Scott, “Critical lines and phase equilibria in binary van der Waals mixtures,” Philos. Trans. R. Soc. London A, vol. 298, no. 1442, pp. 495–540, 1980.10.1098/rsta.1980.0266Search in Google Scholar

[16] T. Kuznetsova and B. Kvamme, “Thermodynamic Properties and Interfacial Tension of a Model Water–Carbon Dioxide System,” Phys. Chem. Chem. Phys., vol. 4, pp. 937–941, 2002.10.1039/b108726fSearch in Google Scholar

[17] O. Lobanova, A. Mejía, G. Jackson, and E. A. Müller, “SAFT-γ force field for the simulation of molecular fluids 6: binary and ternary mixtures comprising water, carbon dioxide, and n-alkanes,” J. Chem. Thermodyn., vol. 93, pp. 320–336, 2016. https://doi.org/10.1016/j.jct.2015.10.011.Search in Google Scholar

[18] L. M. Pereira, A. Chapoy, R. Burgass, and B. Tohidi, “Measurement and modelling of high pressure density and interfacial tension of (gas + n-alkane) binary mixtures,” J. Chem. Thermodyn., vol. 97, pp. 55–69, 2016. https://doi.org/10.1016/j.jct.2015.12.036.Search in Google Scholar

[19] A. Silvestri, S. L. S. Stipp, and M. P. Andersson, “Predicting CO2-H2O interfacial tension using COSMO-RS,” J. Chem. Theory Comput., vol. 13, no. 2, pp. 804–810, 2017. https://doi.org/10.1021/acs.jctc.6b00818.Search in Google Scholar PubMed

[20] A. Silvestri, E. Ataman, A. Budi, S. L. S. Stipp, J. D. Gale, and P. Raiteri, “Wetting properties of the CO2-water-calcite system via molecular simulations: shape and size effects,” Langmuir, vol. 35, no. 50, pp. 16669–16678, 2019. https://doi.org/10.1021/acs.langmuir.9b02881.Search in Google Scholar PubMed

[21] L. M. Pereira, A. Chapoy, R. Burgass, and B. Tohidi, “Interfacial tension of CO2+brine systems: experiments and predictive modelling,” Adv. Water Resour., vol. 103, pp. 64–75, 2017. https://doi.org/10.1016/j.advwatres.2017.02.015.Search in Google Scholar

[22] J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, New York, Dover Publications, 1982.Search in Google Scholar

[23] S. Stephan, H. Cardenas, A. Mejia, and E. A. Mueller, “The monotonicity behavior of density profiles at vapor-liquid interfaces of mixtures,” Fluid Phase Equilib., vol. 564, 2023, Art. no. 113596. https://doi.org/10.1016/j.fluid.2022.113596.Search in Google Scholar

[24] D. J. Lee, M. M. Telo da Gama, and K. E. Gubbins, “The vapour-liquid interface for a Lennard-Jones model of argon-krypton mixtures,” Mol. Phys., vol. 53, no. 5, pp. 1113–1130, 1984. https://doi.org/10.1080/00268978400102891.Search in Google Scholar

[25] M. Mecke, J. Winkelmann, and J. Fischer, “Molecular dynamics simulation of the liquid-vapor interface: binary mixtures of Lennard-Jones fluids,” J. Chem. Phys., vol. 110, pp. 1188–1194, 1999. https://doi.org/10.1063/1.478160.Search in Google Scholar

[26] R. Evans, Fundamentals of Inhomogeneous Fluids, D. Henderson, Ed., New York, Marcel Dekker, 1992.Search in Google Scholar

[27] S. Stephan, J. Liu, K. Langenbach, W. G. Chapman, and H. Hasse, “Vapor-liquid interface of the Lennard-Jones truncated and shifted fluid: comparison of molecular simulation, density gradient theory, and density functional theory,” J. Phys. Chem. C, vol. 122, no. 43, pp. 24705–24715, 2018. https://doi.org/10.1021/acs.jpcc.8b06332.Search in Google Scholar

[28] I. Nitzke, R. Stierle, S. Stephan, M. Pfitzner, J. Gross, and J. Vrabec, “Phase equilibria and interface properties of hydrocarbon propellant-oxygen mixtures in the transcritical regime,” Phys. Fluids, vol. 35, 2023, Art. no. 032117. https://doi.org/10.1063/5.0138973.Search in Google Scholar

[29] J. M. Míguez, J. M. Garrido, F. J. Blas, H. Segura, A. Mejía, and M. M. Piñeiro, “Comprehensive characterization of interfacial behavior for the mixture CO2 + H2O + CH4: comparison between atomistic and coarse grained molecular simulation models and density gradient theory,” J. Phys. Chem. C, vol. 118, no. 42, pp. 24504–24519, 2014. https://doi.org/10.1021/jp507107a.Search in Google Scholar

[30] F. Biscay, A. Ghoufi, V. Lachet, and P. Malfreyt, “Monte Carlo simulations of the pressure dependence of the water-acid gas interfacial tensions,” J. Phys. Chem. B, vol. 113, no. 43, pp. 14277–14290, 2009. https://doi.org/10.1021/jp906953a.Search in Google Scholar PubMed

[31] S. Khosharay, M. Abolala, and F. Varaminian, “Modeling the surface tension and surface properties of CO2+H2O and H2S+H2O with gradient theory in combination with sPC-SAFT EOS and a new proposed influence parameter,” J. Mol. Liq., vol. 198, pp. 292–298, 2014. https://doi.org/10.1016/j.molliq.2014.07.017.Search in Google Scholar

[32] S. Becker, S. Werth, M. Horsch, K. Langenbach, and H. Hasse, “Interfacial tension and adsorption in the binary system ethanol and carbon dioxide: experiments, molecular simulation and density gradient theory,” Fluid Phase Equilib., vol. 427, pp. 476–487, 2016. https://doi.org/10.1016/j.fluid.2016.08.007.Search in Google Scholar

[33] S. Stephan and H. Hasse, “Enrichment at vapour-liquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties,” Int. Rev. Phys. Chem., vol. 39, no. 3, pp. 319–349, 2020. https://doi.org/10.1080/0144235x.2020.1777705.Search in Google Scholar

[34] J. Staubach and S. Stephan, “Interfacial properties of binary azeotropic mixtures of simple fluids: molecular dynamics simulation and density gradient theory,” J. Chem. Phys., vol. 157, 2022, Art. no. 124702. https://doi.org/10.1063/5.0100728.Search in Google Scholar PubMed

[35] E. Schäfer, G. Sadowski, and S. Enders, “Interfacial tension of binary mixtures exhibiting azeotropic behavior: measurement and modeling with PCP-SAFT combined with density gradient theory,” Fluid Phase Equilib., vol. 362, pp. 151–162, 2014. https://doi.org/10.1016/j.fluid.2013.09.042.Search in Google Scholar

[36] S. Stephan and H. Hasse, “Molecular interactions at vapor-liquid interfaces: binary mixtures of simple fluids,” Phys. Rev. E, vol. 101, no. 1, 2020, Art. no. 012802. https://doi.org/10.1103/physreve.101.012802.Search in Google Scholar

[37] S. Stephan, S. Becker, K. Langenbach, and H. Hasse, “Vapor-liquid interfacial properties of the binary system cyclohexane + CO2: experiment, molecular simulation and density gradient theory,” Fluid Phase Equilib., vol. 518, 2020, Art. no. 112583. https://doi.org/10.1016/j.fluid.2020.112583.Search in Google Scholar

[38] S. Stephan, K. Langenbach, and H. Hasse, “Interfacial properties of binary Lennard-Jones mixtures by molecular simulations and density gradient theory,” J. Chem. Phys., vol. 150, 2019, Art. no. 174704. https://doi.org/10.1063/1.5093603.Search in Google Scholar PubMed

[39] S. Enders and H. Kahl, “Interfacial properties of water + alcohol mixtures,” Fluid Phase Equilib., vol. 263, pp. 160–167, 2008. https://doi.org/10.1016/j.fluid.2007.10.006.Search in Google Scholar

[40] C. Klink and J. Gross, “A density functional theory for vapor-liquid interfaces of mixtures using the perturbed-chain polar statistical associating fluid theory equation of state,” Ind. Eng. Chem. Res., vol. 53, no. 14, pp. 6169–6178, 2014. https://doi.org/10.1021/ie4029895.Search in Google Scholar

[41] M. M. Telo da Gama and R. Evans, “The structure and surface tension of the liquid-vapour interface near the upper critical end point of a binary mixture of Lennard-Jones fluids I. the two phase region,” Mol. Phys., vol. 48, no. 2, pp. 229–250, 1983. https://doi.org/10.1080/00268978300100181.Search in Google Scholar

[42] B. Karlsson and R. Friedman, “Dilution of whisky – the molecular perspective,” Sci. Rep., vol. 7, pp. 1–9, 2017. https://doi.org/10.1038/s41598-017-06423-5.Search in Google Scholar PubMed PubMed Central

[43] R. Nagl, P. Zimmermann, and T. Zeiner, “Interfacial mass transfer in water-toluene systems,” J. Chem. Eng. Data, vol. 65, no. 2, pp. 328–336, 2020. https://doi.org/10.1021/acs.jced.9b00672.Search in Google Scholar

[44] M. Matsumoto, “Molecular dynamics simulation of interphase transport at liquid surfaces,” Fluid Phase Equilib., vol. 125, no. 1–2, pp. 195–203, 1996. https://doi.org/10.1016/s0378-3812(96)03123-8.Search in Google Scholar

[45] S. Homes, M. Heinen, and J. Vrabec, “Influence of molecular anisotropy and quadrupolar moment on evaporation,” Phys. Fluids, vol. 35, 2023, Art. no. 052111. https://doi.org/10.1063/5.0147306.Search in Google Scholar

[46] A. Lotfi, J. Vrabec, and J. Fischer, “Evaporation from a free liquid surface,” Int. J. Heat Mass Transfer, vol. 73, pp. 303–317, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.010.Search in Google Scholar

[47] S. I. Anisimov, D. O. Dunikov, V. V. Zhakhovskii, and S. P. Malyshenko, “Properties of a liquid-gas interface at high-rate evaporation,” J. Chem. Phys., vol. 110, pp. 8722–8729, 1999. https://doi.org/10.1063/1.478779.Search in Google Scholar

[48] D. Duque, P. Tarazona, and E. Chacon, “Diffusion at the liquid-vapor interface,” J. Chem. Phys., vol. 128, 2008, Art. no. 134704. https://doi.org/10.1063/1.2841128.Search in Google Scholar PubMed

[49] H. K. Chilukoti, G. Kikugawa, and T. Ohara, “Self-diffusion coefficient and structure of binary n-alkane mixtures at the liquid-vapor interfaces,” J. Phys. Chem. B, vol. 119, no. 41, pp. 13177–13184, 2015. https://doi.org/10.1021/acs.jpcb.5b07189.Search in Google Scholar PubMed

[50] S. Stephan, D. Schaefer, K. Langenbach, and H. Hasse, “Mass transfer through vapour-liquid interfaces: a molecular dynamics simulation study,” Mol. Phys., vol. 119, no. 3, 2021, Art. no. e1810798. https://doi.org/10.1080/00268976.2020.1810798.Search in Google Scholar

[51] S. Cheng, J. B. Lechman, S. J. Plimpton, and G. S. Grest, “Evaporation of Lennard-Jones fluids,” J. Chem. Phys., vol. 134, 2011, Art. no. 224704. https://doi.org/10.1063/1.3595260.Search in Google Scholar PubMed

[52] J. Ge, S. Kjelstrup, D. Bedeaux, J. M. Simon, and B. Rousseau, “Transfer coefficients for evaporation of a system with a Lennard-Jones long-range spline potential,” Phys. Rev. E, vol. 75, no. 6, 2007, Art. no. 061604. https://doi.org/10.1103/physreve.75.061604.Search in Google Scholar PubMed

[53] M. Heinen and J. Vrabec, “Evaporation sampled by stationary molecular dynamics simulation,” J. Chem. Phys., vol. 151, 2019, Art. no. 044704. https://doi.org/10.1063/1.5111759.Search in Google Scholar PubMed

[54] T. Tsuruta, H. Tanaka, and T. Masuoka, “Condensation/evaporation coefficient and velocity distributions at liquid-vapor interface,” Int. J. Heat Mass Transfer, vol. 42, no. 22, pp. 4107–4116, 1999. https://doi.org/10.1016/s0017-9310(99)00081-2.Search in Google Scholar

[55] J. M. Simon, D. Bedeaux, S. Kjelstrup, J. Xu, and E. Johannessen, “Interface film resistivities for heat and mass transfersintegral relations verified by non-equilibrium molecular dynamics,” J. Phys. Chem. B, vol. 110, no. 37, pp. 18528–18536, 2006. https://doi.org/10.1021/jp062047y.Search in Google Scholar PubMed

[56] R. S. Chatwell, M. Heinen, and J. Vrabec, “Diffusion limited evaporation of a binary liquid film,” Int. J. Heat Mass Transfer, vol. 132, pp. 1296–1305, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.030.Search in Google Scholar

[57] D. Schaefer, S. Stephan, K. Langenbach, M. T. Horsch, and H. Hasse, “Mass transfer through vapor-liquid interfaces studied by nonstationary molecular dynamics simulations,” J. Phys. Chem. B, vol. 127, pp. 2521–2533, 2023. https://doi.org/10.1021/acs.jpcb.2c08752.Search in Google Scholar PubMed

[58] V. G. Baidakov and S. P. Protsenko, “Molecular-dynamics simulation of relaxation processes at liquid–gas interfaces in single- and two-component Lennard-Jones systems,” Colloid J., vol. 81, pp. 491–500, 2019. https://doi.org/10.1134/s1061933x19040021.Search in Google Scholar

[59] S. Kjelstrup and B. Hafskjold, “Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in distillation,” Ind. Eng. Chem. Res., vol. 35, pp. 4203–4213, 1996. https://doi.org/10.1021/ie960199h.Search in Google Scholar

[60] V. Bråten, D. Schaefer, S. Stephan, and H. Hasse, “Molecular dynamics simulation study on the mass transfer across vapor–liquid interfaces in azeotropic mixtures,” J. Chem. Phys., vol. 159, 2023, Art. no. 084503. https://doi.org/10.1063/5.0165421.Search in Google Scholar PubMed

[61] V. G. Baidakov, S. P. Protsenko, and V. M. Bryukhanov, “Relaxation processes at liquid-gas interfaces in one- and two-component Lennard-Jones systems: molecular dynamics simulation,” Fluid Phase Equilib., vol. 481, pp. 1–14, 2019. https://doi.org/10.1016/j.fluid.2018.10.012.Search in Google Scholar

[62] I. Inzoli, S. Kjelstrup, D. Bedeaux, and J. Simon, “Transfer coefficients for the liquid-vapor interface of a two-component mixture,” Chem. Eng. Sci., vol. 66, pp. 4533–4548, 2011. https://doi.org/10.1016/j.ces.2011.06.011.Search in Google Scholar

[63] S. Stephan, M. Horsch, J. Vrabec, and H. Hasse, “MolMod – an open access database of force fields for molecular simulations of fluids,” Mol. Simul., vol. 45, no. 10, pp. 806–814, 2019. https://doi.org/10.1080/08927022.2019.1601191.Search in Google Scholar

[64] S. Schmitt, G. Kanagalingam, F. Fleckenstein, D. Froescher, H. Hasse, and S. Stephan, “Extension of the MolMod database to transferable force fields,” J. Chem. Inf. Model., vol. 63, no. 22, pp. 7148–7158, 2023. https://doi.org/10.1021/acs.jcim.3c01484.Search in Google Scholar PubMed

[65] C. Vega and J. L. F. Abascal, “Simulating water with rigid non-polarizable models: a general perspective,” Phys. Chem. Chem. Phys., vol. 13, pp. 19663–19688, 2011. https://doi.org/10.1039/c1cp22168j.Search in Google Scholar PubMed

[66] B. Guillot, “A reappraisal of what we have learnt during three decades of computer simulations on water,” J. Mol. Liq., vol. 101, no. 1–3, pp. 219–260, 2002. https://doi.org/10.1016/s0167-7322(02)00094-6.Search in Google Scholar

[67] G. Kanagalingam, S. Schmitt, F. Fleckenstein, and S. Stephan, “Data scheme and data format for transferable forcefields for molecular simulation,” Sci. Data, vol. 10, p. 495, 2023. https://doi.org/10.1038/s41597-023-02369-8.Search in Google Scholar PubMed PubMed Central

[68] S. O. Yesylevskyy, L. V. Schäfer, D. Sengupta, and S. J. Marrink, “Polarizable water model for the coarse-grained MARTINI force field,” PLoS Comput. Biol., vol. 6, 2010, Art. no. e1000810. https://doi.org/10.1371/journal.pcbi.1000810.Search in Google Scholar PubMed PubMed Central

[69] B. Chen, J. Xing, and J. I. Siepmann, “Development of polarizable water force fields for phase equilibrium calculations,” J. Phys. Chem. B, vol. 104, no. 10, pp. 2391–2401, 2000. https://doi.org/10.1021/jp993687m.Search in Google Scholar

[70] G. Raabe and R. J. Sadus, “Molecular dynamics simulation of the dielectric constant of water: the effect of bond flexibility,” J. Chem. Phys., vol. 134, p. 234501, 2011. https://doi.org/10.1063/1.3600337.Search in Google Scholar PubMed

[71] G. Raabe and R. J. Sadus, “Molecular dynamics simulation of the effect of bond flexibility on the transport properties of water,” J. Chem. Phys., vol. 137, p. 104512, 2012. https://doi.org/10.1063/1.4749382.Search in Google Scholar PubMed

[72] S. Stephan, W. Uffrecht, and M. Raddatz, “Development of a sensor concept for a non-invasive measurement of the steam fraction by vibrational spectroscopy,” Tech. Mess., vol. 84, no. 11, pp. 719–733, 2017. https://doi.org/10.1515/teme-2017-0058.Search in Google Scholar

[73] M. Schappals, et al., “Round robin study: molecular simulation of thermodynamic properties from models with internal degrees of freedom,” J. Chem. Theory Comput., vol. 13, no. 9, pp. 4270–4280, 2017. https://doi.org/10.1021/acs.jctc.7b00489.Search in Google Scholar PubMed

[74] C. G. Aimoli, E. J. Maginn, and C. R. A. Abreu, “Transport properties of carbon dioxide and methane from molecular dynamics simulations,” J. Chem. Phys., vol. 141, 2014, Art. no. 134101. https://doi.org/10.1063/1.4896538.Search in Google Scholar PubMed

[75] T. Merker, C. Engin, J. Vrabec, and H. Hasse, “Molecular model for carbon dioxide optimized to vapor-liquid equilibria,” J. Chem. Phys., vol. 132, 2010, Art. no. 234512. https://doi.org/10.1063/1.3434530.Search in Google Scholar PubMed

[76] G. Pérez-Sánchez, D. González-Salgado, M. M. Piñeiro, and C. Vega, “Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: the role of the quadrupole,” J. Chem. Phys., vol. 138, p. 084506, 2013. https://doi.org/10.1063/1.4792443.Search in Google Scholar PubMed

[77] T. T. Trinh, T. J. H. Vlugt, and S. Kjelstrup, “Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: a systematic study of several common force fields,” J. Chem. Phys., vol. 141, 2014, Art. no. 134504. https://doi.org/10.1063/1.4896965.Search in Google Scholar PubMed

[78] I. Shvab and R. J. Sadus, “Atomistic water models: aqueous thermodynamic properties from ambient to supercritical conditions,” Fluid Phase Equilib., vol. 407, pp. 7–30, 2016. https://doi.org/10.1016/j.fluid.2015.07.040.Search in Google Scholar

[79] J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” J. Chem. Phys., vol. 123, 2005, Art. no. 234505. https://doi.org/10.1063/1.2121687.Search in Google Scholar PubMed

[80] Y.-L. Huang, T. Merker, M. Heilig, H. Hasse, and J. Vrabec, “Molecular modeling and simulation of vapor–liquid equilibria of ethylene oxide, ethylene glycol, and water as well as their binary mixtures,” Ind. Eng. Chem. Res., vol. 51, no. 21, pp. 7428–7440, 2012. https://doi.org/10.1021/ie300248z.Search in Google Scholar

[81] S. Werth, “Molecular modeling and simulation of vapor-liquid interfaces,” Ph.D. thesis, Lehrstuhl für Thermodynamik, Technische Universität Kaiserslautern, 2016.Search in Google Scholar

[82] S. Werth, M. Horsch, and H. Hasse, “Molecular simulation of the surface tension of 33 multi-site models for real fluids,” J. Mol. Liq., vol. 235, pp. 126–134, 2017. https://doi.org/10.1016/j.molliq.2016.12.062.Search in Google Scholar

[83] S. Stephan, F. Fleckenstein, and H. Hasse, “Vapor-liquid interfacial properties of the systems (toluene + CO2) and (toluene + N2): experiments, molecular simulation, and density gradient theory,” J. Chem. Eng. Data, vol. 69, no. 2, pp. 590–607, 2023. https://doi.org/10.1021/acs.jced.3c00338.Search in Google Scholar

[84] C. Vega and E. de Miguel, “Surface tension of the most popular models of water by using the test-area simulation method,” J. Chem. Phys., vol. 126, p. 154707, 2007. https://doi.org/10.1063/1.2715577.Search in Google Scholar PubMed

[85] H. A. Lorentz, “Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase,” Ann. Phys., vol. 248, no. 1, pp. 127–136, 1881. https://doi.org/10.1002/andp.18812480110.Search in Google Scholar

[86] D. Berthelot, “Sur le mélange des gaz,” C. R. Hebd. Seances Acad. Sci., vol. 126, pp. 1703–1706, 1898.Search in Google Scholar

[87] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, “SAFT: equation-of-state solution model for associating fluids,” Fluid Phase Equilib., vol. 52, pp. 31–38, 1989. https://doi.org/10.1016/0378-3812(89)80308-5.Search in Google Scholar

[88] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, “New reference equation of state for associating liquids,” Ind. Eng. Chem. Res., vol. 29, no. 8, pp. 1709–1721, 1990. https://doi.org/10.1021/ie00104a021.Search in Google Scholar

[89] J. Gross and G. Sadowski, “Application of the perturbed-chain SAFT equation of state to associating systems,” Ind. Eng. Chem. Res., vol. 41, no. 22, pp. 5510–5515, 2002. https://doi.org/10.1021/ie010954d.Search in Google Scholar

[90] Dortmund Data Bank, 2022. Available at: www.ddbst.com Accessed: Jan. 15, 2022.Search in Google Scholar

[91] G. Rutkai, et al.., “ms2: a molecular simulation tool for thermodynamic properties, release 3.0,” Comput. Phys. Commun., vol. 221, pp. 343–351, 2017. https://doi.org/10.1016/j.cpc.2017.07.025.Search in Google Scholar

[92] R. Fingerhut, et al.., “ms2: a molecular simulation tool for thermodynamic properties, release 4.0,” Comput. Phys. Commun., vol. 262, 2021, Art. no. 107860. https://doi.org/10.1016/j.cpc.2021.107860.Search in Google Scholar

[93] K. S. Shing, K. E. Gubbins, and K. Lucas, “Henry constants in non-ideal fluid mixtures,” Mol. Phys., vol. 65, no. 5, pp. 1235–1252, 1988. https://doi.org/10.1080/00268978800101731.Search in Google Scholar

[94] B. Widom, “Some topics in the theory of fluids,” J. Chem. Phys., vol. 39, pp. 2808–2812, 1963. https://doi.org/10.1063/1.1734110.Search in Google Scholar

[95] C. Niethammer, et al., “ls1 mardyn: the massively parallel molecular dynamics code for large systems,” J. Chem. Theory Comput., vol. 10, no. 10, pp. 4455–4464, 2014. https://doi.org/10.1021/ct500169q.Search in Google Scholar PubMed

[96] D. Fincham, “Leapfrog rotational algorithms,” Mol. Simul., vol. 8, no. 3–5, pp. 165–178, 1992. https://doi.org/10.1080/08927029208022474.Search in Google Scholar

[97] R. A. Zubillaga, A. Labastida, B. Cruz, J. C. Martinez, E. Sanchez, and J. Alejandre, “Surface tension of organic liquids using the OPLS/AA force field,” J. Chem. Theory Comput., vol. 9, no. 3, pp. 1611–1615, 2013. https://doi.org/10.1021/ct300976t.Search in Google Scholar PubMed

[98] S. Werth, G. Rutkai, J. Vrabec, M. Horsch, and H. Hasse, “Long-range correction for multi-site Lennard-Jones models and planar interfaces,” Mol. Phys., vol. 112, no. 17, pp. 2227–2234, 2014. https://doi.org/10.1080/00268976.2013.861086.Search in Google Scholar

[99] S. Werth, M. Horsch, and H. Hasse, “Long-range correction for dipolar fluids at planar interfaces,” Mol. Phys., vol. 113, no. 23, pp. 3750–3756, 2015. https://doi.org/10.1080/00268976.2015.1061151.Search in Google Scholar

[100] J. Janeček, “Long range corrections in inhomogeneous simulations,” J. Phys. Chem. B, vol. 110, no. 12, pp. 6264–6269, 2006. https://doi.org/10.1021/jp056344z.Search in Google Scholar PubMed

[101] S. Stephan and H. Hasse, “Influence of dispersive long-range interactions on properties of vapour-liquid equilibria and interfaces of binary Lennard-Jones mixtures,” Mol. Phys., vol. 118, no. 9-10, 2020, Art. no. e1699185. https://doi.org/10.1080/00268976.2019.1699185.Search in Google Scholar

[102] D. Fertig and S. Stephan, “Influence of dispersive long-range interactions on transport and excess propertiesof simple mixtures,” Mol. Phys., vol. 121, no. 19-20, 2023, Art. no. e2162993. https://doi.org/10.1080/00268976.2022.2162993.Search in Google Scholar

[103] J. Walton, D. J. Tildesley, J. S. Rowlinson, and J. R. Henderson, “The pressure tensor at the planar surface of a liquid,” Mol. Phys., vol. 48, no. 6, pp. 1357–1368, 1983. https://doi.org/10.1080/00268978300100971.Search in Google Scholar

[104] J. G. Kirkwood and F. P. Buff, “The statistical mechanical theory of surface tension,” J. Chem. Phys., vol. 17, pp. 338–343, 1949. https://doi.org/10.1063/1.1747248.Search in Google Scholar

[105] T. Wadewitz and J. Winkelmann, “Density functional theory: structure and interfacial properties of binary mixtures,” Ber. Bunsenges. Phys. Chem., vol. 100, no. 11, pp. 1825–1832, 1996. https://doi.org/10.1002/bbpc.19961001112.Search in Google Scholar

[106] R. Defay, I. Prigogine, A. Bellmans, and D. H. Everett, Surface Tension and Adsorption, London, Longmans, 1966.Search in Google Scholar

[107] J. Lekner and J. R. Henderson, “Surface tension and energy of a classical liquid-vapour interface,” Mol. Phys., vol. 34, no. 2, pp. 333–359, 1977. https://doi.org/10.1080/00268977700101771.Search in Google Scholar

[108] S. Stephan, M. Thol, J. Vrabec, and H. Hasse, “Thermophysical properties of the Lennard-Jones fluid: database and data assessment,” J. Chem. Inf. Model., vol. 59, no. 10, pp. 4248–4265, 2019. https://doi.org/10.1021/acs.jcim.9b00620.Search in Google Scholar PubMed

[109] S. Stephan, M. Dyga, I. A. Alhafez, J. Lenhard, H. M. Urbassek, and H. Hasse, “Reproducibility of atomistic friction computer experiments: a molecular dynamics simulation study,” Mol. Simul., vol. 47, no. 18, pp. 1509–1521, 2021. https://doi.org/10.1080/08927022.2021.1987430.Search in Google Scholar

[110] G. S. Heffelfinger and F. van Swol, “Diffusion in Lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD),” J. Chem. Phys., vol. 100, pp. 7548–7552, 1994. https://doi.org/10.1063/1.466849.Search in Google Scholar

[111] G. S. Heffelfinger and D. M. Ford, “Massively parallel dual control volume grand canonical molecular dynamics with LADERA I. gradient driven diffusion in Lennard-Jones fluids,” Mol. Phys., vol. 94, no. 4, pp. 659–671, 1998. https://doi.org/10.1080/00268979809482359.Search in Google Scholar

[112] A. P. Thompson, D. M. Ford, and G. S. Heffelfinger, “Direct molecular simulation of gradient-driven diffusion,” J. Chem. Phys., vol. 109, pp. 6406–6414, 1998. https://doi.org/10.1063/1.477284.Search in Google Scholar

[113] A. H. Falls, L. E. Scriven, and H. T. Davis, “Adsorption, structure, and stress in binary interfaces,” J. Chem. Phys., vol. 78, pp. 7300–7317, 1983. https://doi.org/10.1063/1.444720.Search in Google Scholar

[114] S. Stephan and H. Hasse, “Interfacial properties of binary mixtures of simple fluids and their relation to the phase diagram,” Phys. Chem. Chem. Phys., vol. 22, pp. 12544–12564, 2020. https://doi.org/10.1039/d0cp01411g.Search in Google Scholar PubMed

[115] M. Sega and C. Dellago, “Long-range dispersion effects on the water/vapor interface simulated using the most common models,” J. Phys. Chem. B, vol. 121, no. 15, pp. 3798–3803, 2017. https://doi.org/10.1021/acs.jpcb.6b12437.Search in Google Scholar PubMed

[116] J. Alejandre and G. A. Chapela, “The surface tension of TIP4P/2005 water model using the ewald sums for the dispersion interactions,” J. Chem. Phys., vol. 132, 2010, Art. no. 014701. https://doi.org/10.1063/1.3279128.Search in Google Scholar PubMed

[117] S. Stephan, K. Langenbach, and H. Hasse, “Enrichment of components at vapour-liquid interfaces: a study by molecular simulation and density gradient theory,” Chem. Eng. Trans., vol. 69, pp. 295–300, 2018.Search in Google Scholar

[118] E. A. Müller and A. Mejía, “Interfacial properties of selected binary mixtures containing n-alkanes,” Fluid Phase Equilib., vol. 282, no. 2, pp. 68–81, 2009. https://doi.org/10.1016/j.fluid.2009.04.022.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/jnet-2024-0010).


Received: 2024-02-03
Accepted: 2024-06-20
Published Online: 2024-07-16
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2024-0010/html
Scroll to top button