Startseite Non-Linear Stability and Non-Equilibrium Thermodynamics—There and Back Again
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-Linear Stability and Non-Equilibrium Thermodynamics—There and Back Again

  • Mark Dostalík und Vít Průša ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We discuss the role of thermodynamics in non-linear stability analysis of spatially distributed dissipative systems governed by non-linear partial differential equations. We document profound interplay between various concepts in thermodynamics on one side and non-linear stability analysis on the other side, and subsequently we summarize and comment on various results regarding the non-linear stability of thermodynamically isolated as well as thermodynamically open systems.

Award Identifier / Grant number: 20-11027X

Award Identifier / Grant number: UNCE/SCI/023

Funding statement: The authors thank the Czech Science Foundation for its support (grant number 20-11027X). This work has been supported by Charles University Research program No. UNCE/SCI/023.

Acknowledgment

We thank the organizers of the 16th Joint European Thermodynamics Conference (JETC) for giving us the opportunity to present our work. We also thank the anonymous reviewers for their comments, which helped us to improve the quality of the manuscript.

References

[1] C. Truesdell and W. Noll, The non-linear field theories of mechanics, in: S. Flüge (ed.), Handbuch der Physik III, Springer, Berlin (1965), 3.10.1007/978-3-642-46015-9_1Suche in Google Scholar

[2] H. Ziegler, An introduction to thermomechanics, North-Holland, 1971.Suche in Google Scholar

[3] I. Müller, Thermodynamics. Interaction of Mechanics and Mathematics, London, Pitman, 1985.Suche in Google Scholar

[4] M. Šilhavý, The mechanics and thermodynamics of continuous media. Texts and Monographs in Physics, Springer, Berlin, 1997.10.1007/978-3-662-03389-0Suche in Google Scholar

[5] H. C. Öttinger, Beyond equilibrium thermodynamics, John Wiley & Sons, Hoboken, New Jersey, 2005.10.1002/0471727903Suche in Google Scholar

[6] D. Jou, J. Casas-Vázquez and G. Lebon, Extended irreversible thermodynamics, 3rd ed., Springer, New York, 2001.10.1007/978-3-642-56565-6Suche in Google Scholar

[7] M. Pavelka, V. Klika and M. Grmela, Multiscale Thermo-Dynamics, de Gruyter, Berlin, 2018.10.1515/9783110350951Suche in Google Scholar

[8] D. D. Holm, J. E. Marsden, T. Ratiu and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep. 123 (1985), no. 1–2, 1–116.10.1016/0370-1573(85)90028-6Suche in Google Scholar

[9] J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method, Arch. Ration. Mech. Anal. 115 (1991), no. 72, 15–59.10.1007/BF01881678Suche in Google Scholar

[10] J. C. Simo, T. A. Posbergh and J. E. Marsden, Stability of relative equilibria. Part II: Application to nonlinear elasticity, Arch. Ration. Mech. Anal. 115 (1991), 61–100.10.1007/BF01881679Suche in Google Scholar

[11] B. D. Coleman and J. M. Greenberg, Thermodynamics and the stability of fluid motion, Arch. Ration. Mech. Anal. 25 (1967), no. 5, 321–341.10.1007/BF00291935Suche in Google Scholar

[12] B. D. Coleman, On the stability of equilibrium states of general fluids, Arch. Ration. Mech. Anal. 36 (1970), no. 1, 1–32.10.1007/BF00255744Suche in Google Scholar

[13] M. E. Gurtin, Thermodynamics and the energy criterion for stability, Arch. Ration. Mech. Anal. 52 (1973), 93–103.10.1007/BF00282319Suche in Google Scholar

[14] M. E. Gurtin, Thermodynamics and stability, Arch. Ration. Mech. Anal. 59 (1975), no. 1, 63–96.10.1007/BF00281517Suche in Google Scholar

[15] M. Bulíček, J. Málek and V. Průša, Thermodynamics and stability of non-equilibrium steady states in open systems, Entropy 21 (2019), 7.10.3390/e21070704Suche in Google Scholar PubMed PubMed Central

[16] D. D. Joseph, Stability of fluid motions II, Springer Tracts in Natural Philosophy 28, Springer, Berlin, 1976.10.1007/978-3-642-80994-1Suche in Google Scholar

[17] J. N. Flavin and S. Rionero, Qualitative estimates for partial differential equations: An introduction, CRC Press, Boca Raton, 1995.Suche in Google Scholar

[18] B. Straughan, The energy method, stability, and nonlinear convection, 2nd ed., Applied Mathematical Sciences 91, Springer, New York, 2004.10.1007/978-0-387-21740-6Suche in Google Scholar

[19] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, 3rd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 325, Springer, Berlin, 2010.10.1007/978-3-642-04048-1Suche in Google Scholar

[20] D. Serre and A. F. Vasseur, About the relative entropy method for hyperbolic systems of conservation laws, in: A panorama of mathematics: Pure and applied, Contemporary Mathematics 658, American Mathematical Society (2016), 237–248.10.1090/conm/658/13123Suche in Google Scholar

[21] H. B. Callen, Thermodynamics and an introduction to thermostatistics, John Wiley & Sons, 1985.Suche in Google Scholar

[22] D. Kondepudi and I. Prigogine, Modern thermodynamics: from heat engines to dissipative structures, John Wiley & Sons, 1998.Suche in Google Scholar

[23] L. N. Trefethen and M. Embree, Spectra and pseudospectra: The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, 2005.10.1515/9780691213101Suche in Google Scholar

[24] P. J. Schmid and D. S. Henningson, Stability and transition in shear flows. Applied Mathematical Sciences 142, Springer, New York, 2001.10.1007/978-1-4613-0185-1Suche in Google Scholar

[25] C. Meyer, Matrix analysis and applied linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.10.1137/1.9780898719512Suche in Google Scholar

[26] P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley, London, 1971.Suche in Google Scholar

[27] R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Ann. Phys. Chem. 125 (1865), no. 7, 353–400.10.1002/andp.18652010702Suche in Google Scholar

[28] P. Duhem, Traité d’Énergetique ou Thermodynamique Générale, Paris, 1911.Suche in Google Scholar

[29] M. Dostalík, J. Málek, V. Průša and E. Süli, A simple construction of a thermodynamically consistent mathematical model for non-isothermal flows of dilute compressible polymeric fluids, Fluids 5 (2020), 3. 133.10.3390/fluids5030133Suche in Google Scholar

[30] H. C. Öttinger and M. Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism, Phys. Rev. E 56 (1997), no. 6, 6633–6655.10.1103/PhysRevE.56.6633Suche in Google Scholar

[31] O. Le Métayer and R. Saurel, The Noble–Abel stiffened-gas equation of state, Phys. Fluids 28 (2016), no. 4, 046102.10.1063/1.4945981Suche in Google Scholar

[32] E. Feireisl and D. Pražák, Asymptotic behavior of dynamical systems in fluid mechanics, AIMS Series on Applied Mathematics 4, American Institute of Mathematical Sciences (AIMS), Springfield, 2010.Suche in Google Scholar

[33] E. Feireisl, Relative entropies in thermodynamics of complete fluid systems, Discrete Contin. Dyn. Syst. 32 (2012), no. 9, 3059–3080.10.3934/dcds.2012.32.3059Suche in Google Scholar

[34] C. M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal. 70 (1979), no. 2, 167–179.10.1007/BF00250353Suche in Google Scholar

[35] M. Dostalík, V. Průša and K. R. Rajagopal, Unconditional finite amplitude stability of a fluid in a mechanically isolated vessel with spatially non-uniform wall temperature, Contin. Mech. Thermodyn. 33 (2021), 515–543.10.1007/s00161-020-00925-wSuche in Google Scholar

[36] M. Dostalík, V. Průša and K. Tůma, Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type fluid, Entropy 21 (2019), 12.10.3390/e21121219Suche in Google Scholar

[37] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, 1981.10.1007/BFb0089647Suche in Google Scholar

[38] H. J. Zwart, Examples on stability for infinite-dimensional systems, in: M. K. Camlibel, A. A. Julius, R. Pasumarthy and J. M. A. Scherpen (eds.), Mathematical control theory I: Nonlinear and hybrid control systems, Lecture Notes in Control and Information Sciences, Springer, Berlin (2015), 343–348.10.1007/978-3-319-20988-3_18Suche in Google Scholar

[39] M. Dostalík, V. Průša and J. Stein, Unconditional finite amplitude stability of a viscoelastic fluid in a mechanically isolated vessel with spatially non-uniform wall temperature, Math. Comput. Simul. 189 (2021), 5–20.10.1016/j.matcom.2020.05.009Suche in Google Scholar

Received: 2021-10-15
Revised: 2021-12-13
Accepted: 2022-01-21
Published Online: 2022-02-08
Published in Print: 2022-04-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2021-0076/html?lang=de
Button zum nach oben scrollen