Home Non-Linear Heat Transport Effects in Systems with Defects
Article
Licensed
Unlicensed Requires Authentication

Non-Linear Heat Transport Effects in Systems with Defects

  • David Jou and Liliana Restuccia EMAIL logo
Published/Copyright: February 3, 2022

Abstract

In this paper we explore several aspects of the influence of fixed and of mobile defects on the thermal conductivity of materials. In particular, we investigate the effects of the temperature and defect concentration dependence of the conductivity on phononic diodes and transistors and on the non-linear thermal conductivity dependent on the heat flux in thermal superlattices.

References

[1] D. Jou and L. Restuccia, Non-linear heat transport in superlattices with mobile defects, Entropy 21 (2019), 1200, DOI: 10.3390/e21121200.Search in Google Scholar

[2] D. Jou and L. Restuccia, Non-equilibrium dislocation dynamics in semiconductor crystals and superlattices, J. Non-Equilib. Thermodyn. 43 (2018), 163–170, DOI: 10.1515/jnet-2018-0002.Search in Google Scholar

[3] D. Jou and L. Restuccia, Non-equilibrium thermodynamics framework for dislocations in semiconductor crystals and superlattices, Ann. Acad. Rom. Sci. Ser. Math. Appl.. 10 (2018), 90–109.Search in Google Scholar

[4] N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi and B. Li, Phononics: manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84 (2012), 1045, DOI: 10.1103/RevModPhys.84.1045.Search in Google Scholar

[5] M. Maldovan, Sound and heat revolutions in phononics, Nature 503 (2013), 209, DOI: 10.1038/nature12608.Search in Google Scholar PubMed

[6] Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, et al., Temperature-dependent transformation: from switchable thermal cloaks to macroscopic thermal diodes, J. Phys. Rev. Lett. 115 (2015), 195503.10.1103/PhysRevLett.115.195503Search in Google Scholar PubMed

[7] M. Criado-Sancho and D. Jou, A simple model of thermoelastic heat switches and heat transistors, J. Appl. Phys. 121 (2017), 024503, DOI: 10.1063/1.4974011.Search in Google Scholar

[8] A. Sood, F. Xiong, S. Chen, H. Wang, D. Selli, J. Zhang, et al., An electrochemical thermal transistor, Nat. Commun. 9 (2018), 4510, DOI: 10.1038/s41467-018-06760-7.Search in Google Scholar PubMed PubMed Central

[9] F. X. Alvarez, J. Alvarez-Quintana, D. Jou and J. Rodríguez-Viejo, Analytical expression for thermal conductivity of superlattices, J. Appl. Phys. 107 (2010), 084303, DOI: 10.1063/1.3386464.Search in Google Scholar

[10] W. Zhao, Y. Wang, Z. Wu, W. Wang, K. Bi, Z. Liang, et al., Defect-engineered heat transport in Graphene: a route to high efficient thermal rectification, Sci. Rep. 5 (2015), 11962.10.1038/srep11962Search in Google Scholar PubMed PubMed Central

[11] S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108 (2012), 214303, DOI: 10.1103/PhysRevLett.108.214303.Search in Google Scholar PubMed

[12] A. Granato, Thermal properties of mobile defects, Phys. Rev. 740 (1958).10.1103/PhysRev.111.740Search in Google Scholar

[13] T. D. Swinburneand and S. L. Dudarev, Phonon drag force acting on a mobile crystal defect: Full treatment of discreteness and nonlinearity, Phys. Rev. B 92 (2015), 134302, DOI: 10.1103/PhysRevB.92.134302.Search in Google Scholar

[14] D. Jou, J. Casas-Vazquez and G. Lebon, Extended Irreversible Thermodynamics, 4th ed., Springer, Berlin, Germany, 2010.10.1007/978-90-481-3074-0Search in Google Scholar

[15] D. Jou and L. Restuccia, Mesoscopic transport equations and contemporary thermodynamics: an introduction, Contemp. Phys. 52 (2011), 465–474, DOI: 10.1080/00107514.2011.595596.Search in Google Scholar

[16] M. S. Mongioví, D. Jou and M. Sciacca, Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium, Phys. Rep. 726 (2018), 1–71, DOI: 10.1016/j.physrep.2017.10.004.Search in Google Scholar

[17] G. Lebon, J. Casas-Vázquez and D. Jou, Understanding Non-Equilibrium Thermodynamics, Springer, Berlin, Germany, 2008.10.1007/978-3-540-74252-4Search in Google Scholar

[18] W. Muschik, Fundamentals of non-equilibrium thermodynamics, in: W. Muschik (ed.), Non-Equilibrium Thermodynamics with Applications to Solids, 336, Springer, Wien, Austria, New York, NY, USA (1993).10.1007/978-3-7091-4321-6Search in Google Scholar

[19] F. Schaffer, in: M. E. Levinshtein, S. L. Rumyantsev and M. S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, Wiley, New York, (2001), 149–188.Search in Google Scholar

[20] Y. Zhao, T. J. Lu, H. P. Hodson and J. D. Jackson, The temperature dependence of effective thermal conductivity of open-celled steel alloy foams, Mater. Sci. Eng.. 367 (2004), 123–131. DOI: 10.1016/j.msea.2003.10.241.Search in Google Scholar

[21] I. Carlomagno, V. A. Cimmelli and D. Jou, Enhanced thermal recitification in graded Si c Ge 1 c alloys, Mech. Res. Commun. 103 (2020), 103472, DOI: 10.1016/j.mechrescom.2020.103472.Search in Google Scholar

Received: 2021-10-01
Revised: 2021-12-13
Accepted: 2022-01-11
Published Online: 2022-02-03
Published in Print: 2022-04-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2021-0072/html
Scroll to top button