Startseite Extended Nonequilibrium Variables for 1D Hyperbolic Heat Conduction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extended Nonequilibrium Variables for 1D Hyperbolic Heat Conduction

  • Sergey L. Sobolev ORCID logo EMAIL logo und Igor V. Kudinov
Veröffentlicht/Copyright: 14. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We use the Shannon (information) entropy to define an “entropic” temperature for 1D nonequilibrium system with heat flux. In contrast to the kinetic temperature, which is related to the average kinetic energy, the nonequilibrium entropic temperature is related to the changes in entropy and serves as a criterion for thermalization. However, the direction and value of the heat flux is controlled by the gradient of the kinetic temperature, whereas space-time evolution and the space-time evolution of the heat flux are governed by the hyperbolic heat conduction equation. The extended nonequilibrium variables, namely, entropy, entropic temperature, thermal conductivity, and heat capacity demonstrate a third-law-like behavior at high deviation from equilibrium when the heat flux tends to its maximum value, even at nonzero value of the kinetic temperature. The ratio of the heat flux to its maximum possible value plays a role of an order parameter – it varies from zero in the equilibrium (disordered) state to unity in the nonequilibrium (ordered) state.

Award Identifier / Grant number: 20-38-70021

Funding statement: The reported study was funded by RFBR, project number 20-38-70021. This work was performed in accordance with the state task registration No. 0089-2019-0002.

References

[1] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, et al., Nanoscale thermal transport, J. Appl. Phys.93 (2003), 793–818.10.1063/1.1524305Suche in Google Scholar

[2] D. Jou, J. Casas-Vazquez and G. Lebon, Extended Irreversible Thermodynamics, fourth ed., Springer, Berlin, 2010.10.1007/978-90-481-3074-0Suche in Google Scholar

[3] R. E. Nettleton and S. L. Sobolev, Applications of extended thermodynamics to chemical, rheological and transport processes. Part I. Approaches and scalar rate processes, J. Non-Equilib. Thermodyn.20 (1995), 205–229. Part II. Vector processes, shear relaxation and rheology, J. Non-Equilib. Thermodyn.20 (1995), 297–331; Part III. Wave phenomena, J. Non-Equilib. Thermodyn.21 (1996), 1–16.Suche in Google Scholar

[4] K. Kosmidis and G. Dassios, Monte Carlo simulations in drug release, J. Pharmacokinet. Pharmacodyn.46 (2019), 165–172, DOI: 10.1007/s10928-019-09625-8.Suche in Google Scholar PubMed

[5] X. -X. Yu, A. Gulec, Q. Sherman, K. L. Cwalina, J. R. Scully, J. H. Perepezko, et al., Nonequilibrium solute capture in passivating oxide films, Phys. Rev. Lett.121 (2018), 145701-7.10.1103/PhysRevLett.121.145701Suche in Google Scholar PubMed

[6] W. Liu, K. Saanouni, S. Forest and P. Hu, The micromorphic approach to generalized heat equations, J. Non-Equilib. Thermodyn.42 (2017), 327–358, DOI: 10.1515/jnet-2016-0080.Suche in Google Scholar

[7] G. G. de la Cruz and Yu. G. Gurevich, The effect of electron–phonon energy exchange on thermal pulse propagation in semiconductors, Semicond. Sci. Technol.26 (2011), 025011-6.10.1088/0268-1242/26/2/025011Suche in Google Scholar

[8] S. L. Sobolev, Transport processes and traveling waves in systems with local nonequilibrium, Sov. Phys. Usp.34 (1991), 217–229.10.1070/PU1991v034n03ABEH002348Suche in Google Scholar

[9] S. L. Sobolev, Local non-equilibrium transport models, Phys. Usp.40 (1997), 1043–1053.10.1070/PU1997v040n10ABEH000292Suche in Google Scholar

[10] D. D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys.61 (1989), 41–73. 62 (1990), 375–391.10.1103/RevModPhys.61.41Suche in Google Scholar

[11] Y. Dong, B. Cao and Z. Y. Guo, Temperature in nonequilibrium states and non-Fourier heat conduction, Phys. Rev. E87 (2013), 032150-8.10.1103/PhysRevE.87.032150Suche in Google Scholar

[12] H. -D. Kim, Two-dimensional nonlinear nonequilibrium kinetic theory under steady heat conduction, Phys. Rev. E71 (2005), 041203-19.10.1103/PhysRevE.71.041203Suche in Google Scholar PubMed

[13] S. L. Sobolev and I. V. Kudinov, Ordered motion of active colloids and effective temperature, Physica A540 (2020), 123155, DOI: 10.1016/j.physa.2019.123155.Suche in Google Scholar

[14] T. Feng, W. Yao, Z. Wang, J. Shi, C. Li, B. Cao, et al., Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces, Phys. Rev. B95 (2017), 195202-13.10.1103/PhysRevB.95.195202Suche in Google Scholar

[15] K. R. Narayanan and A. R. Srinivasa, Shannon-entropy-based nonequilibrium “entropic” temperature of a general distribution, Phys. Rev. E85 (2012), 031151-11.10.1103/PhysRevE.85.031151Suche in Google Scholar PubMed

[16] J. Camacho, Third law of thermodynamics in the presence of a heat flux, Phys. Rev. E51 (1995), 220–225.10.1103/PhysRevE.51.220Suche in Google Scholar PubMed

[17] D. Jou and L. Restuccia, Caloric and entropic temperatures in non-equilibrium steady states, Physica A460 (2016), 246–253, DOI: 10.1016/j.physa.2016.04.034.Suche in Google Scholar

[18] S. L. Sobolev, Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux, Phys. Rev. E97 (2018), 022122-13, DOI: 10.1103/PhysRevE.97.022122.Suche in Google Scholar PubMed

[19] S. L. Sobolev, Effective temperature in nonequilibrium state with heat flux using discrete variable model, Phys. Lett. A381 (2017), 2893–2897, DOI: 10.1016/j.physleta.2017.07.018.Suche in Google Scholar

[20] S. I. Serdyukov, Generalized temperature and non-classical heat conduction in rigid bodies, J. Non-Equilib. Thermodyn.38 (2013), 81–96.10.1515/jnetdy-2012-0006Suche in Google Scholar

[21] M. Calvo-Schwarzwalder, T. G. Myersa and M. G. Hennessy, The one-dimensional Stefan problem with non-Fourier heat conduction, preprint (2019), arXiv:1905.06320.10.1016/j.ijthermalsci.2019.106210Suche in Google Scholar

[22] L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford, 1970.Suche in Google Scholar

[23] S. L. Sobolev, On hyperbolic heat-mass transfer equation, Int. J. Heat Mass Transf.122 (2018), 629–630, DOI: 10.1016/j.ijheatmasstransfer.2018.02.022.Suche in Google Scholar

[24] J. Xu and X. Wang, Simulation of ballistic and non-Fourier thermal transport in ultra-fast laser heating, Physica B351 (2004), 213–226.10.1016/j.physb.2004.06.009Suche in Google Scholar

[25] S. L. Sobolev, Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses, Int. J. Heat Mass Transf.94 (2016), 138–144, DOI: 10.1016/j.ijheatmasstransfer.2015.11.075.Suche in Google Scholar

[26] S. L. Sobolev, Rapid phase transformation under local non-equilibrium diffusion conditions, Mater. Sci. Technol.31 (2015), 1607–1617, DOI: 10.1179/1743284715Y.0000000051.Suche in Google Scholar

[27] R. A. Escobar, S. S. Ghai, M. S. Jhon and C. H. Amon, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling, Int. J. Heat Mass Transf.49 (2009), 97–107.10.1016/j.ijheatmasstransfer.2005.08.003Suche in Google Scholar

[28] S. Pisipati, J. Geer, B. Sammakia and B. T. Murray, A novel alternate approach for multiscale thermal transport using diffusion in the Boltzmann transport equation, Int. J. Heat Mass Transf.54 (2011), 3406–3419.10.1016/j.ijheatmasstransfer.2011.03.046Suche in Google Scholar

[29] E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev.106 (1957), 620–630.10.1103/PhysRev.106.620Suche in Google Scholar

[30] S. I. Serdyukov and N. M. Voskresenskii, Behavior of entropy in non-classical heat conduction of incompressible media, J. Non-Equilib. Thermodyn.35 (2010), 323–335.10.1515/jnetdy.2010.020Suche in Google Scholar

[31] S. I. Serdyukov, Macroscopic entropy of non-equilibrium systems and postulates of extended thermodynamics: application to transport phenomena and chemical reactions in nanoparticles, Entropy20 (2018), 802 (19p.).10.3390/e20100802Suche in Google Scholar PubMed PubMed Central

[32] S. N. Li and B. Y. Cao, On entropic framework based on standard and fractional phonon Boltzmann transport equations, Entropy21 (2019), 204 (10p.).10.3390/e21020204Suche in Google Scholar PubMed PubMed Central

[33] Z. Guo, Energy-mass duality of heat and its applications, ES Energy Environ.1 (2018), 4–15.10.30919/esee8c146Suche in Google Scholar

[34] S. N. Li and B. Y. Cao, Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction, Phys. Rev. E96 (2017), 032131-7.10.1103/PhysRevE.96.032131Suche in Google Scholar PubMed

[35] A. Bérut, A. Arakelyan, A. Petrosyan, et al., Experimental verification of Landauer’s principle linking information and thermodynamics, Nature483 (2012), 187–189.10.1038/nature10872Suche in Google Scholar PubMed

[36] M. Popovic, Researchers in an entropy wonderland: A review of the entropy concept, arXiv:1711.07326v1.Suche in Google Scholar

[37] J. M. Parrondo, J. M. Horowitz and T. Sagawa, Thermodynamics of information, Nat. Phys.11 (2015), 131–139.10.1038/nphys3230Suche in Google Scholar

[38] M. Pfleger, T. Wallek and A. Pfennig, Constraints of compound systems: Prerequisites for thermodynamic modeling based on Shannon entropy, Entropy16 (2014), 2990–3008.10.3390/e16062990Suche in Google Scholar

[39] M. Pfleger, T. Wallek and A. Pfennig, Discrete modeling: Thermodynamics based on Shannon entropy and discrete states of molecules, Ind. Eng. Chem. Res.54 (2015), 4643–4654.10.1021/ie504919bSuche in Google Scholar

[40] M. Gavrilov, R. Chetrite and J. Bechhoefer, Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs–Shannon form, Proc. Natl. Acad. Sci.114 (2017), 11097–11102.10.1073/pnas.1708689114Suche in Google Scholar PubMed PubMed Central

[41] S. H. Sohrab, Boltzmann entropy of thermodynamics versus Shannon entropy of information theory, Int. J. Mech.8 (2014), 73–84.Suche in Google Scholar

[42] D. Samios, The relation between thermodynamics and the information theories: The introduction of the term enmorphy, Int. J. Swarm Intell. Evol. Comput.5 (2016), 140-5, DOI: 10.4172/2090-4908.1000140.Suche in Google Scholar

[43] A. Dhar, Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses, Phys. Rev. Lett.86 (2001), 3554–3557.10.1103/PhysRevLett.86.3554Suche in Google Scholar PubMed

[44] A. Vaudrey, F. Lanzetta and M. Feidt, H. B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines, J. Non-Equilib. Thermodyn.39 (2014), 199–203.10.1515/jnet-2014-0018Suche in Google Scholar

[45] M. Moreau and Y. Pomeau, Carnot principle and its generalizations: A very short story of a long journey, Eur. Phys. J. Spec. Top.224 (2015), 769–780.10.1140/epjst/e2015-02426-7Suche in Google Scholar

[46] R. S. Johal, Efficiencies of power plants, quasi-static models and the geometric-mean temperature, Eur. Phys. J. Spec. Top.226 (2017), 489–498.10.1140/epjst/e2016-60265-9Suche in Google Scholar

[47] C. -Y. Wang, Thermodynamics since Einstein, Adv. Nat. Sci.6 (2013), 13–17.Suche in Google Scholar

[48] T. S. Bíró and P. Ván, About the temperature of moving bodies, Europhys. Lett.89 (2010), 30001-6.10.1209/0295-5075/89/30001Suche in Google Scholar

Received: 2020-01-21
Accepted: 2020-02-24
Published Online: 2020-03-14
Published in Print: 2020-07-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2019-0076/html?lang=de
Button zum nach oben scrollen