Startseite Energetic Optimization Considering a Generalization of the Ecological Criterion in Traditional Simple-Cycle and Combined-Cycle Power Plants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Energetic Optimization Considering a Generalization of the Ecological Criterion in Traditional Simple-Cycle and Combined-Cycle Power Plants

  • Sergio Levario-Medina , Gabriel Valencia-Ortega und Marco Antonio Barranco-Jiménez EMAIL logo
Veröffentlicht/Copyright: 30. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The fundamental issue in the energetic performance of power plants, working both as traditional fuel engines and as combined-cycle turbines (gas-steam), lies in quantifying the internal irreversibilities which are associated with the working substance operating in cycles. The purpose of several irreversible energy converter models is to find objective thermodynamic functions that determine operation modes for real thermal engines and at the same time study the trade-off between energy losses per cycle and the useful energy. As those objective functions, we focus our attention on a generalization of the so-called ecological function in terms of an ϵ parameter that depends on the particular heat transfer law used in the irreversible heat engine model. In this work, we mathematically describe the configuration space of an irreversible Curzon–Ahlborn type model. The above allows to determine the optimal relations between the model parameters so that a power plant operates in physically accessible regions, taking into account internal irreversibilities, introduced in two different ways (additively and multiplicatively). In addition, we establish the conditions that the ϵ parameter must fulfill for the energy converter to work in an optimal region between maximum power output and maximum efficiency points.

Acknowledgment

We want to thank to Professor F. Angulo-Brown for his recommendations to improve this manuscript. We also thank the anonymous reviewer for his relevant comments, which made it possible to improve the article.

References

[1] L. Chen, C. Wu and F. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn.24 (1999), 260–279.10.1515/JNETDY.1999.020Suche in Google Scholar

[2] L. Chen, D. Xia and F. Sun, Ecological optimization of generalized irreversible chemical engines, Int. J. Chem. React. Eng.8 (2010), 1542–6580.10.2202/1542-6580.2361Suche in Google Scholar

[3] M. Feidt and M. Costea, From finite time to finite physical dimensions thermodynamics: the Carnot engine and Onsager’s relations revisited, J. Non-Equilib. Thermodyn.43 (2018), 151–161.10.1515/jnet-2017-0047Suche in Google Scholar

[4] S. Velasco, J. M. M. Roco, A. Medina, J. A. White and A. Calvo-Hernández, Optimization of heat engines including the saving of natural resources and the reduction of thermal pollution, J. Phys. D, Appl. Phys.33 (2000), 355–359.10.1088/0022-3727/33/4/307Suche in Google Scholar

[5] S. Sánchez-Orgaz, A. Medina and A. Calvo Hernández, Maximum overall efficiency for a solar-driven gas turbine power plant, Int. J. Energy Res.37 (2013), 1580–1591.10.1002/er.2967Suche in Google Scholar

[6] M. J. Santos, R. P. Merchán, A. Medina and A. Calvo Hernández, Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant, Energy Convers. Manag.115 (2016), 89–102.10.1016/j.enconman.2016.02.019Suche in Google Scholar

[7] S. Levario-Medina, G. Valencia-Ortega and L. A. Arias-Hernandez, Thermal optimization of Curzon–Ahlborn heat engines operating under some generalized efficient power regimes, Eur. Phys. J. Plus134 (2019), 348: 1–13.10.1140/epjp/i2019-12711-2Suche in Google Scholar

[8] A. Bejan, Advanced Engineering Thermodynamics, 3rd ed., John Wiley and Sons Inc., New York, 2006.Suche in Google Scholar

[9] M. A. Barranco-Jiménez and F. Angulo-Brown, Thermoeconomic optimisation of Novikov power plant model under maximum ecological conditions, J. Energy Inst.80 (2007), 96–104.10.1179/174602207X187195Suche in Google Scholar

[10] J. J. Silva-Martinez and L. A. Arias-Hernandez, Energetic performance of a series arrangement of irreversible power cycles, Rev. Mex. Fis.59 (2013), 1: 192–198.Suche in Google Scholar

[11] I. Reyes-Ramírez, M. A. Barranco-Jiménez, A. Rojas-Pacheco and L. Guzmán-Vargas, Global stability analysis of a Curzon–Ahlborn heat engine under different regimes of performance, Entropy16 (2014), 5796–5809.10.3390/e16115796Suche in Google Scholar

[12] J. Gonzalez-Ayala, L. A. Arias-Hernandez and F. Angulo-Brown, A graphic approach to include dissipative-like effects in reversible thermal cycles, Eur. Phys. J. B90 (2017), 86: 1–8.10.1140/epjb/e2017-80001-4Suche in Google Scholar

[13] H. Feng, L. Chen and F. Sun, Optimal ratios of the piston speeds for a finite speed irreversible Carnot heat engine cycle, Int. J. Sustain. Energy30 (2011), 321–335.10.1080/1478646X.2010.515741Suche in Google Scholar

[14] M. Feidt, Finite Physical Dimension Optimal Thermodynamics 1-Fundamentals, 1st ed., ISTE Press, Elsevier, London, 2017.10.1016/B978-1-78548-232-8.50001-7Suche in Google Scholar

[15] K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn.22 (1997), 311–355.Suche in Google Scholar

[16] C. Wu, L. Chen and J. Chen, Recent Advances in Finite Time Thermodynamics, 1st ed., Nova Science, New York, 1999.Suche in Google Scholar

[17] A. Durmayaz, O. S. Sogutb, B. Sahin and H. Yavuzd, Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics, Prog. Energy Combust. Sci.30 (2004), 175–217.10.1016/j.pecs.2003.10.003Suche in Google Scholar

[18] S. Petrescu, M. Costea, C. Harman and T. Florea, Application of the Direct Method to irreversible Stirling cycles with finite speed, Int. J. Energy Res.26 (2002), 589–609.10.1002/er.806Suche in Google Scholar

[19] L. G. Chen, H. J. Feng and F. R. Sun, Optimal piston speed ratio analyses for irreversible Carnot refrigerator and heat pump using finite time thermodynamics, finite speed thermodynamics and direct method, J. Energy Inst.84 (2011), 105–112.10.1179/014426011X12968328625595Suche in Google Scholar

[20] M. Feidt, Thermodynamique optimale en dimensions physiques finies, 1st ed., Hermes Science, Paris, 2013 (in French).Suche in Google Scholar

[21] F. Angulo-Brown, J. Fernández-Betanzos and C. A. Pico, Compression ratio of an optimized air standard Otto-cycle model, Eur. J. Phys.15 (1994), 38–42.10.1088/0143-0807/15/1/007Suche in Google Scholar

[22] F. Angulo-Brown, J. A. Rocha-Martínez and T. D. Navarrete-González, A non-endoreversible Otto cycle model: improving power output and efficiency, J. Phys. D29 (1996), 80–83.10.1088/0022-3727/29/1/014Suche in Google Scholar

[23] A. Fischer and K. H. Hoffmann, Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak? J. Non-Equilib. Thermodyn.29 (2004), 9–28.10.1515/JNETDY.2004.002Suche in Google Scholar

[24] P. L. Curto Risso, A. Medina and A. Calvo Hernández, Theoretical and simulated models for an irreversible Otto cycle, J. Appl. Phys.104 (2008), 094911: 1–11.10.1063/1.2986214Suche in Google Scholar

[25] P. L. Curto Risso, A. Medina and A. Calvo Hernández, Optimizing the operation of a spark ignition engine: simulation and theoretical tools, J. Appl. Phys.105 (2009), 094904-1–094904-10.10.1063/1.3116560Suche in Google Scholar

[26] Y. Izumida and K. Okuda, Molecular kinetic analysis of a finite-time Carnot cycle, Europhys. Lett.83 (2008), 60003-p1–60003-p6.10.1209/0295-5075/83/60003Suche in Google Scholar

[27] D. A. Rojas-Gamboa, J. I. Rodríguez, J. Gonzalez-Ayala and F. Angulo-Brown, Ecological efficiency of finite-time thermodynamics: a molecular dynamics study, Phys. Rev. E98 (2018), 022130-1–022130-11.10.1103/PhysRevE.98.022130Suche in Google Scholar

[28] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, 1st ed., Oxford University Press, Oxford, 1992.10.1016/0927-0248(93)90008-QSuche in Google Scholar

[29] S. Özkaynak, S. Göktun and H. Yavuz, Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility, J. Phys. D, Appl. Phys.27 (1994), 1139–1143.10.1088/0022-3727/27/6/010Suche in Google Scholar

[30] J. Chen, The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D, Appl. Phys.27 (1994), 1144–1149.10.1088/0022-3727/27/6/011Suche in Google Scholar

[31] F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys.69 (1991), 7465–7469.10.1063/1.347562Suche in Google Scholar

[32] A. Calvo-Hernández, A. Medina, J. M. M. Roco, J. A. White and S. Velasco, Unified optimization criterion for energy converters, Phys. Rev. E63 (2001), 037102. 1–4.10.1103/PhysRevE.63.037102Suche in Google Scholar

[33] T. Yilmaz, A new performance criterion for heat engines: efficient power, J. Energy Inst.79 (2006), 38–41.10.1179/174602206X90931Suche in Google Scholar

[34] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys.43 (1975), 22–24.10.1119/1.10023Suche in Google Scholar

[35] J. Chen, Z. Yan, G. Lin and B. Andresen, On the Curzon–Ahlborn efficiency and its connection with the efficiencies of real heat engines, Energy Convers. Manag.42 (2001), 173–181.10.1016/S0196-8904(00)00055-8Suche in Google Scholar

[36] M. H. Rubin, Optimal configuration of a class of irreversible heat engines. I, Phys. Rev. A19 (1979), 1272–1276.10.1103/PhysRevA.19.1272Suche in Google Scholar

[37] R. C. Tolman and P. C. Fine, On the irreversible production of entropy, Rev. Mod. Phys.20 (1948), 51–77.10.1103/RevModPhys.20.51Suche in Google Scholar

[38] S. Levario-Medina and L. A. Arias-Hernandez, The PΦ-Compromise Function as a criterion of merit to optimize irreversible thermal engines, preprint (2019), http://arxiv.org/pdf/1908.11861v1.Suche in Google Scholar

[39] A. Bejan, Theory of heat transfer-irreversible power plants, Int. Heat Mass Transf.31 (1988), 1211–1219.10.1016/0017-9310(88)90064-6Suche in Google Scholar

[40] J. M. Gordon and M. Huleihil, General performance characteristics of real heat engines, J. Appl. Phys.72 (1992), 829–837.10.1063/1.351755Suche in Google Scholar

[41] J. M. Gordon and M. Huleihil, On optimizing maximum-power heat engines, J. Appl. Phys.69 (1991), 1–7.10.1063/1.347744Suche in Google Scholar

[42] L. A. Arias-Hernandez, M. A. Barranco-Jiménez and F. Angulo-Brown, Comparative analysis of two ecological type modes of performance for a simple energy converter, J. Energy Inst.82 (2009), 223–227.10.1179/014426009X12448189963432Suche in Google Scholar

[43] L. A. AriasHernandez and F. AnguloBrown, A general property of endoreversible thermal engines, J. Appl. Phys.81 (1997), 2973–2979.10.1063/1.364090Suche in Google Scholar

[44] S. Sieniutycz and P. Salamon, Finite Time Thermodynamics and Thermoeconomics, 1st ed., Taylor and Francis, New York, 1990.Suche in Google Scholar

[45] G. Valencia-Ortega and L. A. Arias-Hernandez, Thermodynamic optimization of an electric circuit as a non-steady energy converter, J. Non-Equilib. Thermodyn.42 (2017), 187–200.10.1515/jnet-2016-0037Suche in Google Scholar

[46] S. Levario-Medina, Estudio del desempeño energético de un motor térmico operando a potencia eficiente generalizada, Master Thesis, ESFM-IPN, México 2016 (in Spanish).Suche in Google Scholar

[47] R. Clausius, The Mechanical Theory of Heat, 1st ed., Mac Millan and Co., London, 1879.Suche in Google Scholar

[48] P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen, What conditions make minimum entropy production equivalent to maximum power production? J. Non-Equilib. Thermodyn.26 (2001), 73–83.10.1515/JNETDY.2001.006Suche in Google Scholar

[49] A. Ocampo-García, M. A. Barranco-Jiménez and F. Angulo-Brown, Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines, Eur. Phys. J. Plus133 (2018), 342: 1–16.10.1140/epjp/i2018-12158-ySuche in Google Scholar

[50] K. Schwalbe and K. H. Hoffmann, Optimal Control of an endoreversible solar power plant, J. Non-Equilib. Thermodyn.43 (2018), 255–271.10.1515/jnet-2018-0021Suche in Google Scholar

[51] M. A. Barranco-Jiménez, A. Ocampo-García and F. Angulo-Brown, Thermodynamic analysis of an array of isothermal endoreversible electric engines, Eur. Phys. J. Plus135 (2020), 153: 1–14.10.1140/epjp/s13360-019-00038-7Suche in Google Scholar

[52] F. Angulo-Brown, M. Santillán and E. Calleja-Quevedo, Thermodynamic optimality in some biochemical reactions, Il Nuovo Cimento D17 (1995), 87–90.10.1007/BF02451604Suche in Google Scholar

[53] M. Santillán, L. A. Arias-Hernandez and F. Angulo-Brown, Some optimization criteria for biological systems in linear irreversible thermodynamics, IL Nuovo Cimento D19 (1997), 99–112.Suche in Google Scholar

[54] M. A. Barranco-Jiménez and F. Angulo-Brown, A nonendoreversible model for wind energy as a solar-driven heat engine, J. Appl. Phys.80 (1996), 4872–4876.10.1063/1.363732Suche in Google Scholar

[55] M. A. Barranco-Jiménez and F. Angulo-Brown, A simple model on the influence of the greenhouse effect on the efficiency of solar-to-wind energy conversion, IL Nuovo Cimento D26 (2003), 235–246.Suche in Google Scholar

[56] F. Angulo-Brown and L. A. Arias-Hernandez, Reply to “Comment on ‘A general property of endoreversible thermal engines”’ [J. Appl. Phys. 89, 1518 (2001)], J. Appl. Phys.89 (2001), 1520–1521.10.1063/1.1335619Suche in Google Scholar

Received: 2019-11-08
Revised: 2020-03-20
Accepted: 2020-05-08
Published Online: 2020-05-30
Published in Print: 2020-07-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2019-0088/html
Button zum nach oben scrollen