Startseite Thermo-osmosis in Membrane Systems: A Review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermo-osmosis in Membrane Systems: A Review

  • V. María Barragán EMAIL logo und Signe Kjelstrup
Veröffentlicht/Copyright: 14. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We give a first review of experimental results for a phenomenon little explored in the literature, namely thermal osmosis or thermo-osmosis. Such systems are now getting increased attention because of their ability to use waste heat for separation purposes. We show that this volume transport of a solution or a pure liquid caused by a temperature difference across a membrane can be understood as a property of the membrane system, i. e. the membrane with its adjacent solutions. We present experimental values found in the literature of thermo-osmotic coefficients of neutral and hydrophobic as well as charged and hydrophilic membranes, with water and other permeant fluids as well as electrolyte solutions. We propose that the coefficient can be qualitatively explained by a formula that contains the entropy of adsorption of permeant into the membrane, the hydraulic permeability, and a factor that depends on the interface resistance to heat transfer. A variation in the entropy of adsorption with hydrophobic/hydrophilic membranes and structure breaking/structure making cations could then explain the sign of the permeant flux. Systematic experiments in the field are lacking and we propose an experimental program to mend this situation.

Acknowledgements

Kim Roger Kristiansen is thanked for discussions on the thermo-osmotic pressure. V. María Barragán wishes to thank the Norwegian University of Science and Technology (NTNU) for financial and support from the Research Council of Norway – grant no 197598 during her stay. ENERSENSE is thanked for support of the Open Access publication.

References

[1] S. Kim and M. M. Mench, Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Thermo-osmosis in membranes, J. Membr. Sci. 328 (2009), 113–120.10.1016/j.memsci.2008.11.043Suche in Google Scholar

[2] R. Zaffou, S. Y. Jung, H. R. Kunz and J. M. Fenton, Temperature-driven water transport through membrane electrode assembly of proton exchange membrane fuel cells. Electrochem. Solid St. 9 (2006), no. 9, A418-A422.10.1149/1.2218306Suche in Google Scholar

[3] S. Kim and M. M. Mench, Investigation of temperature-driven water transport in polymer electrolyte fuel cell: phase-change-induced flow, J. Electrochem. Soc. 156 (2009), B353-B362.10.1149/1.3046136Suche in Google Scholar

[4] J. P. G. Villaluenga, B. Seoane, V. M. Barragán and C. Ruiz-Bauzá, Thermo-osmosis 2 of mixtures of water and methanol through a Nafion membrane, J. Membr. Sci. 274 (2006), 116–12.10.1016/j.memsci.2005.08.010Suche in Google Scholar

[5] J. Lee, T. Laoui and R. Karnik, Nanofluidic transport governed by liquid /vapour interface, Nat. Nanotechnol. 16 (2014), 317–323.10.1038/nnano.2014.28Suche in Google Scholar

[6] A. F. Al-Alawy and R. M. Al-Alawy, Thermal osmosis of mixtures of water and organic compounds through different membranes, Iraqi J. Chem. Petrol Eng. 17 (2016), 53–68.Suche in Google Scholar

[7] N. Kuipers, J. Hanemaaijer, H. Brouwer, J. Van Medervoort, A. Jansen, F. Altena, et al., Simultaneous production of high-quality water and electrical power from aqueous feedstock’s and waste heat by high pressure membrane distillation, Desalin. Water Treat. 55 (2014), 2766–2776.10.1080/19443994.2014.946724Suche in Google Scholar

[8] L. Keulen, L. V. Van Der Ham, J. Haanemaijer, N. J. M. Kuipers, T. J. S. Vlugt and S. Kjelstrup, Membrane distillation against a pressure difference, J. Membr. Science524 (2017), 151–162.10.1016/j.memsci.2016.10.054Suche in Google Scholar

[9] A. P. Bregulla, A. Würger, K. Günther, M. Merting and F. Cichos, Thermo-osmotic flow in thin films, Phys. Rev. Lett. 116 (2016), 188303(5).10.1103/PhysRevLett.116.188303Suche in Google Scholar

[10] G. Lippmann, Endosmose entre deux Liquides de Même Composition Chimique et de Températures Différentes, Compt. Rend. 145 (1907), 104–105.Suche in Google Scholar

[11] M. Aubert, Thermo-osmose, Ann. Chim. Phys. 26 (1912), 145.10.1016/S0033-3506(12)80070-9Suche in Google Scholar

[12] K. G. Denbigh and G. Raumann, Thermo-osmosis of gases through a membrane. I. Theoretical, Proc. R. Soc. London A210 (1952), 377–387.10.1098/rspa.1952.0007Suche in Google Scholar

[13] K. F. Alexander and K. Wirtz, Thermoosmose in wassrigen Systemen, Z, Physik. Chem. 195 (1950), 165.10.1515/zpch-1950-19515Suche in Google Scholar

[14] C. W. Carr and K. Sollner, New experiments on thermoosmosis, J. Electrochem. Soc. 109 (1962), 616–622.10.1149/1.2425508Suche in Google Scholar

[15] Y. Kobatake and H. Fujita, Osmotic flows in charged membranes. II. Thermo-osmosis, J. Chem. Phys. 41 (1964), 2963–2966.10.1063/1.1725659Suche in Google Scholar

[16] H. P. Hutchinson, I. S. Nixon and K. G. Denbigh, The thermo-osmosis of liquids through porous materials, Discuss. Faraday Soc. 3 (1948), 86–94.10.1039/df9480300086Suche in Google Scholar

[17] B. Derjaguin and G. Sidorenkov, Thermoosmosis at ordinary temperature and its analogy with the thermomechanical effect in helium II, Compt. Rend. U.R.S.S. 32 (1941), 622–626.Suche in Google Scholar

[18] R. Haase and C. Steinert, Thermoosmose in Flüssigkeiten. II. Messungen, Z. Phys. Chem. N.F. 21 (1959), 270.10.1524/zpch.1959.21.3_4.270Suche in Google Scholar

[19] R. Haase and H. J. De Greiff, Thermoosmose in Flüssigkeiten. III. Richtungsumkehr und Zeitverlang, Z. Phys. Chem. N.F. 44 (1965), 301.10.1524/zpch.1965.44.5_6.301Suche in Google Scholar

[20] R. Haase, H. J. De Greiff and H. J. Buchner, Thermoosmose in Flüssigkeiten. IV. Weitere Messungen, Z. Naturforsch. A25a (1970), 1080–1085.10.1515/zna-1970-0713Suche in Google Scholar

[21] R. Haase and H. J. De Greiff, Thermoosmose in FLüssigkeiten. V. Untersuchungen am System Cellophan + Methanol, Z. Naturforsch. 26a (1971), 1773–1774.10.1515/zna-1971-1033Suche in Google Scholar

[22] R. P. Rastogi, R. L. Blokhra and R. K. Agarwal, Cross-phenomenological coefficients. Part 1. Studies on thermo-osmosis, Trans. Faraday Soc60 (1964), 1386–1390.10.1039/TF9646001386Suche in Google Scholar

[23] R. P. Rastogi and K. Singh, Cross-phenomenological coefficients. Part 5. Thermo-osmosis of liquids through cellophane membrane, Trans. Faraday Soc. 62 (1966), 1754–1761.10.1039/TF9666201754Suche in Google Scholar

[24] R. P. Rastogi, K. Singh and R. M. Misra, Thermo-osmosis and electro-osmosis of water and electrophoresis of suspensions in water, Desalination3 (1967), 32–36.10.1016/S0011-9164(00)84022-9Suche in Google Scholar

[25] M. S. Dariel and O. Kedem, Thermoosmosis in Semipermeable Membranes, J. Phys. Chem79 (1975), 336–342.10.1021/j100571a010Suche in Google Scholar

[26] M. Tasaka and M. Nagasawa, Nonisothermal membrane phenomena through charged membranes, J. Polym. Sci. Sym. 49 (1975), 31–42.10.1002/polc.5070490104Suche in Google Scholar

[27] W. E. Golstein and F. H. Verhoff, An investigation of Anomalous osmosis and Thermoosmosis, Aiche J21 (1975), 229–237.10.1002/aic.690210203Suche in Google Scholar

[28] H. Vink and S. A. A. Chishti, Thermal osmosis in liquids, J. Membr. Sci. 1 (1976), 149–164.10.1016/S0376-7388(00)82265-6Suche in Google Scholar

[29] M. Tasaka, S. Abe, S. Sugiura and M. Nagasawa, Thermoosmosis through charged membranes, Biophys. Chem. 6 (1977), 271–278.10.1016/0301-4622(77)85008-4Suche in Google Scholar

[30] J. I. Mengual, J. Aguilar and C. Fernández-Pineda, Thermoosmosis of water through cellulose acetate membranes, J. Membr. Sci. 4 (1978), 209–219.10.1016/S0376-7388(00)83296-2Suche in Google Scholar

[31] M. Tasaka and M. Nagasawa, Thermoosmosis through charged membranes. Theoretical analysis of concentration dependence, Biophys. Chem. 8 (1978), 111–116.10.1016/0301-4622(78)80002-7Suche in Google Scholar

[32] F. S. Gaeta and D. G. Mita, Non-isothermal mass transport in porous media, J. Membr. Sci. 3 (1978), 191–214.10.1016/S0376-7388(00)83022-7Suche in Google Scholar

[33] F. Belluci, E. Drioli, F. S. Gaeta, D. G. Mita, N. Pagliuca and D. Tomadacis, Temperature gradient affecting mass transport in synthetic membranes, J. Membr. Sci. 7 (1980), 169–183.10.1016/S0376-7388(00)80080-0Suche in Google Scholar

[34] F. Belluci, Temperature polarization effects in thermo-osmosis, J. Membr. Sci. 9 (1981), 285–301.10.1016/S0376-7388(00)80270-7Suche in Google Scholar

[35] C. Fernández-Pineda and M. I. Váquez-González, Temperature dependence of thermo-osmosis. A solution model, J. Chem. Soc. Faraday Trans. I 85, (1989), 1019–1025.10.1039/f19898501019Suche in Google Scholar

[36] N. Pagliuca, D. G. Mita and F. S. Gaeta, Isothermal and non-isothermal water transport in porous membranes. I. The power balance, J. Membr. Sci. 14 (1983), 31–57.10.1016/S0376-7388(00)81372-1Suche in Google Scholar

[37] J. I. Mengual and F. García-López, Permeation and thermal osmosis of water through cellulose acetate membranes, J. Membr. Sci. 26 (1986), 211–230.10.1016/S0376-7388(00)80064-2Suche in Google Scholar

[38] C. Fernández-Pineda and M. I. Váquez-González, Differential thermo-osmotic permeability in water-cellophane systems. A solution model, J. Chem. Soc. Faraday Trans. I 84, (1988), 647–656.10.1039/f19888400647Suche in Google Scholar

[39] J. I. Mengual and F. García-López, Thermoosmosis of water, methanol, and ethanol through cellulose acetate membranes, J. Colloid Interface Sci. 125 (1988), 667–678.10.1016/0021-9797(88)90034-3Suche in Google Scholar

[40] D. G. Mita, F. Belluci, E. Drioli, M. G. Cutuli and F. S. Gaeta, Nonisothermal matter transport in sodium chloride and potassium chloride aqueous solutions. 2. Heterogeneous membrane system (thermodialysis), J. Phys. Chem. 86 (1982), 2975–2982.10.1021/j100212a033Suche in Google Scholar

[41] M. Tasaka, K. Kishi and M. Okita, Thermoosmosis of various electrolyte solutions through anion-exchange membranes, J. Membr. Sci. 17 (1984), 149–160.10.1016/S0376-7388(00)82292-9Suche in Google Scholar

[42] M. Tasaka and H. Futamura, The effect of temperature on thermoosmosis, J. Membr. Sci. 28 (1986), 183–190.10.1016/S0376-7388(00)82209-7Suche in Google Scholar

[43] M. Tasaka, Thermal membrane potential and thermoosmosis across charged membranes, Pure Appl. Chem. 58 (1986), 1637–1646.10.1351/pac198658121637Suche in Google Scholar

[44] M. Tasaka, T. Mizuta and O. Sekiguchi, Mass transfer through polymer membranes due to a temperature gradient, J. Membr. Sci. 54 (1990), 191–204.10.1016/S0376-7388(00)82079-7Suche in Google Scholar

[45] M. Tasaka, T. Hirai, R. Kiyono and Y. Aki, Solvent transport across cation-exchange membranes under a temperature difference and an osmotic pressure difference, J. Membr. Sci. 71 (1992), 151–159.10.1016/0376-7388(92)85014-ASuche in Google Scholar

[46] M. Tasaka, T. Urata, R. Kiyono and Y. Aki, Solvent transport across anion-exchange membranes under a temperature difference and an osmotic pressure difference, J. Membr. Sci. 67 (1992), 83–91.10.1016/0376-7388(92)87042-VSuche in Google Scholar

[47] K. Hanaoka, R. Kiyono and M. Tasaka, Thermal membrane potential across anion-exchange membranes in KCL and KIO3 solutions and the transported entropy of ions, J. Membr. Sci. 82 (1993), 255–263.10.1016/0376-7388(93)85190-8Suche in Google Scholar

[48] T. Suzuki, Y. Takahashi, R. Kiyono and M. Tasaka, Nonisothermal membrane phenomena across perfluorosulfonic acid-type membranes, Flemion S: Part I. Thermoosmosis and transported entropy of water, Colloid Polym. Sci. 272 (1994), 971–978.10.1007/BF00658895Suche in Google Scholar

[49] T. Suzuki, R. Kiyono and M. Tasaka, Solvent transport across anion-exchange membranes under a temperature difference and transported entropy of water, J. Membr. Sci. 92 (1994), 85–93.10.1016/0376-7388(94)80015-4Suche in Google Scholar

[50] T. Suzuki, K. Iwano, R. Kiyono and M. Tasaka,Thermoosmosis, and transport entropy of water across hydrocarbonsulfonic acid-type cation-exchange membranes, Bull. Chem. Soc. Jp. 68 (1995), 493–501.10.1246/bcsj.68.493Suche in Google Scholar

[51] J. M. Ortiz de Zárate, F. García-López and J. I. Mengual, Temperature polarization in non-isothermal mass transport through membranes, J. Chem. Soc. Faraday Trans. 86 (1990), 2891–2896.10.1039/FT9908602891Suche in Google Scholar

[52] Y. A. Gandomi, M. D. Edmundson, F. C. Busby and M. M. Mench, Water management in polymer electrolyte fuel cells through asymmetric thermal and mass transport engineering of the micro-porous layers, J. Electrochem. Soc. 163 (2016), F933-F944.10.1149/2.1331608jesSuche in Google Scholar

[53] P. J. S. Vie and S. Kjelstrup, Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell, Electrochim. Acta49 (2004), 1069–1107.10.1016/j.electacta.2003.10.018Suche in Google Scholar

[54] S. Kjelstrup and D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous Systems, Series on Advances in Statistical Mechanics, Volume 16, World Scientific Publishing Co., Singapore, 2008.10.1142/6672Suche in Google Scholar

[55] K. S. Førland, T. Førland and S. Kjelstrup Ratkje, Irreversible Thermodynamics. Theory and Applications, Wiley & Sons, Chichester, 1988.Suche in Google Scholar

[56] A. Katalsky and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, 1967.Suche in Google Scholar

[57] V. M. Barragán, J. P. G. Villaluenga, M. P. Godino, M. A. Izquierdo-Gil, C. Ruiz-Bauzá and B. Seoane, Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies, J. Colloid Interface Sci. 333 (2009), 497–502.10.1016/j.jcis.2009.02.015Suche in Google Scholar

[58] J. P. G. Villaluenga, V. M. Barragán, M. A. Izquierdo-Gil, M. P. Godino, B. Seoane and C. Ruiz-Bauzá, Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol, J. Membr. Sci. 323 (2008), 421–427.10.1016/j.memsci.2008.06.049Suche in Google Scholar

[59] J. P. G. Villaluenga, V. M. Barragán, M. A. Izquierdo-Gil, M. P. Godino, B. Seoane and C. Ruiz-Bauzá, Fluid flow modeling in a sulfonated cation-exchange membrane, J. Appl. Polym. Sci. 114 (2009), 1412–1416.10.1002/app.30757Suche in Google Scholar

[60] V. M. Barragán and S. Muñoz, Influence of a microwave irradiation of the swelling and permeation properties of a Nafion membrane, J Membr. Sep. Technol. 4 (2015), 25–31.10.6000/1929-6037.2015.04.02.1Suche in Google Scholar

[61] H. S. Frank and W. Y. Wen, Ion-solvent interaction structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure, Discuss. Faraday Soc. 24 (1957), 133–140.10.1039/df9572400133Suche in Google Scholar

[62] Y. Marcus, Effect of ions on the structure of water, Pure Appl. Chem. 82 (2010), 1889–1899.10.1351/PAC-CON-09-07-02Suche in Google Scholar

[63] P. Gallo, D. Corradini and M. Rovere, Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: A test of the structure making and braking concept, Phys. Chem. Chem. Phys. 13 (2011), 19814–19822.10.1039/c1cp22166cSuche in Google Scholar

[64] B. V. Derjaguin and N. V. Churaev, Flow of nonfreezing water interlayers and frost heaving, Prog. Surf. Sci. 43 (1993), 232–240.10.1016/0079-6816(93)90033-RSuche in Google Scholar

Received: 2016-12-22
Revised: 2017-2-15
Accepted: 2017-3-22
Published Online: 2017-4-14
Published in Print: 2017-6-27

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2016-0088/html
Button zum nach oben scrollen