Home Thermo-osmosis in Membrane Systems: A Review
Article
Licensed
Unlicensed Requires Authentication

Thermo-osmosis in Membrane Systems: A Review

  • V. María Barragán EMAIL logo and Signe Kjelstrup
Published/Copyright: April 14, 2017

Abstract

We give a first review of experimental results for a phenomenon little explored in the literature, namely thermal osmosis or thermo-osmosis. Such systems are now getting increased attention because of their ability to use waste heat for separation purposes. We show that this volume transport of a solution or a pure liquid caused by a temperature difference across a membrane can be understood as a property of the membrane system, i. e. the membrane with its adjacent solutions. We present experimental values found in the literature of thermo-osmotic coefficients of neutral and hydrophobic as well as charged and hydrophilic membranes, with water and other permeant fluids as well as electrolyte solutions. We propose that the coefficient can be qualitatively explained by a formula that contains the entropy of adsorption of permeant into the membrane, the hydraulic permeability, and a factor that depends on the interface resistance to heat transfer. A variation in the entropy of adsorption with hydrophobic/hydrophilic membranes and structure breaking/structure making cations could then explain the sign of the permeant flux. Systematic experiments in the field are lacking and we propose an experimental program to mend this situation.

Acknowledgements

Kim Roger Kristiansen is thanked for discussions on the thermo-osmotic pressure. V. María Barragán wishes to thank the Norwegian University of Science and Technology (NTNU) for financial and support from the Research Council of Norway – grant no 197598 during her stay. ENERSENSE is thanked for support of the Open Access publication.

References

[1] S. Kim and M. M. Mench, Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Thermo-osmosis in membranes, J. Membr. Sci. 328 (2009), 113–120.10.1016/j.memsci.2008.11.043Search in Google Scholar

[2] R. Zaffou, S. Y. Jung, H. R. Kunz and J. M. Fenton, Temperature-driven water transport through membrane electrode assembly of proton exchange membrane fuel cells. Electrochem. Solid St. 9 (2006), no. 9, A418-A422.10.1149/1.2218306Search in Google Scholar

[3] S. Kim and M. M. Mench, Investigation of temperature-driven water transport in polymer electrolyte fuel cell: phase-change-induced flow, J. Electrochem. Soc. 156 (2009), B353-B362.10.1149/1.3046136Search in Google Scholar

[4] J. P. G. Villaluenga, B. Seoane, V. M. Barragán and C. Ruiz-Bauzá, Thermo-osmosis 2 of mixtures of water and methanol through a Nafion membrane, J. Membr. Sci. 274 (2006), 116–12.10.1016/j.memsci.2005.08.010Search in Google Scholar

[5] J. Lee, T. Laoui and R. Karnik, Nanofluidic transport governed by liquid /vapour interface, Nat. Nanotechnol. 16 (2014), 317–323.10.1038/nnano.2014.28Search in Google Scholar

[6] A. F. Al-Alawy and R. M. Al-Alawy, Thermal osmosis of mixtures of water and organic compounds through different membranes, Iraqi J. Chem. Petrol Eng. 17 (2016), 53–68.Search in Google Scholar

[7] N. Kuipers, J. Hanemaaijer, H. Brouwer, J. Van Medervoort, A. Jansen, F. Altena, et al., Simultaneous production of high-quality water and electrical power from aqueous feedstock’s and waste heat by high pressure membrane distillation, Desalin. Water Treat. 55 (2014), 2766–2776.10.1080/19443994.2014.946724Search in Google Scholar

[8] L. Keulen, L. V. Van Der Ham, J. Haanemaijer, N. J. M. Kuipers, T. J. S. Vlugt and S. Kjelstrup, Membrane distillation against a pressure difference, J. Membr. Science524 (2017), 151–162.10.1016/j.memsci.2016.10.054Search in Google Scholar

[9] A. P. Bregulla, A. Würger, K. Günther, M. Merting and F. Cichos, Thermo-osmotic flow in thin films, Phys. Rev. Lett. 116 (2016), 188303(5).10.1103/PhysRevLett.116.188303Search in Google Scholar

[10] G. Lippmann, Endosmose entre deux Liquides de Même Composition Chimique et de Températures Différentes, Compt. Rend. 145 (1907), 104–105.Search in Google Scholar

[11] M. Aubert, Thermo-osmose, Ann. Chim. Phys. 26 (1912), 145.10.1016/S0033-3506(12)80070-9Search in Google Scholar

[12] K. G. Denbigh and G. Raumann, Thermo-osmosis of gases through a membrane. I. Theoretical, Proc. R. Soc. London A210 (1952), 377–387.10.1098/rspa.1952.0007Search in Google Scholar

[13] K. F. Alexander and K. Wirtz, Thermoosmose in wassrigen Systemen, Z, Physik. Chem. 195 (1950), 165.10.1515/zpch-1950-19515Search in Google Scholar

[14] C. W. Carr and K. Sollner, New experiments on thermoosmosis, J. Electrochem. Soc. 109 (1962), 616–622.10.1149/1.2425508Search in Google Scholar

[15] Y. Kobatake and H. Fujita, Osmotic flows in charged membranes. II. Thermo-osmosis, J. Chem. Phys. 41 (1964), 2963–2966.10.1063/1.1725659Search in Google Scholar

[16] H. P. Hutchinson, I. S. Nixon and K. G. Denbigh, The thermo-osmosis of liquids through porous materials, Discuss. Faraday Soc. 3 (1948), 86–94.10.1039/df9480300086Search in Google Scholar

[17] B. Derjaguin and G. Sidorenkov, Thermoosmosis at ordinary temperature and its analogy with the thermomechanical effect in helium II, Compt. Rend. U.R.S.S. 32 (1941), 622–626.Search in Google Scholar

[18] R. Haase and C. Steinert, Thermoosmose in Flüssigkeiten. II. Messungen, Z. Phys. Chem. N.F. 21 (1959), 270.10.1524/zpch.1959.21.3_4.270Search in Google Scholar

[19] R. Haase and H. J. De Greiff, Thermoosmose in Flüssigkeiten. III. Richtungsumkehr und Zeitverlang, Z. Phys. Chem. N.F. 44 (1965), 301.10.1524/zpch.1965.44.5_6.301Search in Google Scholar

[20] R. Haase, H. J. De Greiff and H. J. Buchner, Thermoosmose in Flüssigkeiten. IV. Weitere Messungen, Z. Naturforsch. A25a (1970), 1080–1085.10.1515/zna-1970-0713Search in Google Scholar

[21] R. Haase and H. J. De Greiff, Thermoosmose in FLüssigkeiten. V. Untersuchungen am System Cellophan + Methanol, Z. Naturforsch. 26a (1971), 1773–1774.10.1515/zna-1971-1033Search in Google Scholar

[22] R. P. Rastogi, R. L. Blokhra and R. K. Agarwal, Cross-phenomenological coefficients. Part 1. Studies on thermo-osmosis, Trans. Faraday Soc60 (1964), 1386–1390.10.1039/TF9646001386Search in Google Scholar

[23] R. P. Rastogi and K. Singh, Cross-phenomenological coefficients. Part 5. Thermo-osmosis of liquids through cellophane membrane, Trans. Faraday Soc. 62 (1966), 1754–1761.10.1039/TF9666201754Search in Google Scholar

[24] R. P. Rastogi, K. Singh and R. M. Misra, Thermo-osmosis and electro-osmosis of water and electrophoresis of suspensions in water, Desalination3 (1967), 32–36.10.1016/S0011-9164(00)84022-9Search in Google Scholar

[25] M. S. Dariel and O. Kedem, Thermoosmosis in Semipermeable Membranes, J. Phys. Chem79 (1975), 336–342.10.1021/j100571a010Search in Google Scholar

[26] M. Tasaka and M. Nagasawa, Nonisothermal membrane phenomena through charged membranes, J. Polym. Sci. Sym. 49 (1975), 31–42.10.1002/polc.5070490104Search in Google Scholar

[27] W. E. Golstein and F. H. Verhoff, An investigation of Anomalous osmosis and Thermoosmosis, Aiche J21 (1975), 229–237.10.1002/aic.690210203Search in Google Scholar

[28] H. Vink and S. A. A. Chishti, Thermal osmosis in liquids, J. Membr. Sci. 1 (1976), 149–164.10.1016/S0376-7388(00)82265-6Search in Google Scholar

[29] M. Tasaka, S. Abe, S. Sugiura and M. Nagasawa, Thermoosmosis through charged membranes, Biophys. Chem. 6 (1977), 271–278.10.1016/0301-4622(77)85008-4Search in Google Scholar

[30] J. I. Mengual, J. Aguilar and C. Fernández-Pineda, Thermoosmosis of water through cellulose acetate membranes, J. Membr. Sci. 4 (1978), 209–219.10.1016/S0376-7388(00)83296-2Search in Google Scholar

[31] M. Tasaka and M. Nagasawa, Thermoosmosis through charged membranes. Theoretical analysis of concentration dependence, Biophys. Chem. 8 (1978), 111–116.10.1016/0301-4622(78)80002-7Search in Google Scholar

[32] F. S. Gaeta and D. G. Mita, Non-isothermal mass transport in porous media, J. Membr. Sci. 3 (1978), 191–214.10.1016/S0376-7388(00)83022-7Search in Google Scholar

[33] F. Belluci, E. Drioli, F. S. Gaeta, D. G. Mita, N. Pagliuca and D. Tomadacis, Temperature gradient affecting mass transport in synthetic membranes, J. Membr. Sci. 7 (1980), 169–183.10.1016/S0376-7388(00)80080-0Search in Google Scholar

[34] F. Belluci, Temperature polarization effects in thermo-osmosis, J. Membr. Sci. 9 (1981), 285–301.10.1016/S0376-7388(00)80270-7Search in Google Scholar

[35] C. Fernández-Pineda and M. I. Váquez-González, Temperature dependence of thermo-osmosis. A solution model, J. Chem. Soc. Faraday Trans. I 85, (1989), 1019–1025.10.1039/f19898501019Search in Google Scholar

[36] N. Pagliuca, D. G. Mita and F. S. Gaeta, Isothermal and non-isothermal water transport in porous membranes. I. The power balance, J. Membr. Sci. 14 (1983), 31–57.10.1016/S0376-7388(00)81372-1Search in Google Scholar

[37] J. I. Mengual and F. García-López, Permeation and thermal osmosis of water through cellulose acetate membranes, J. Membr. Sci. 26 (1986), 211–230.10.1016/S0376-7388(00)80064-2Search in Google Scholar

[38] C. Fernández-Pineda and M. I. Váquez-González, Differential thermo-osmotic permeability in water-cellophane systems. A solution model, J. Chem. Soc. Faraday Trans. I 84, (1988), 647–656.10.1039/f19888400647Search in Google Scholar

[39] J. I. Mengual and F. García-López, Thermoosmosis of water, methanol, and ethanol through cellulose acetate membranes, J. Colloid Interface Sci. 125 (1988), 667–678.10.1016/0021-9797(88)90034-3Search in Google Scholar

[40] D. G. Mita, F. Belluci, E. Drioli, M. G. Cutuli and F. S. Gaeta, Nonisothermal matter transport in sodium chloride and potassium chloride aqueous solutions. 2. Heterogeneous membrane system (thermodialysis), J. Phys. Chem. 86 (1982), 2975–2982.10.1021/j100212a033Search in Google Scholar

[41] M. Tasaka, K. Kishi and M. Okita, Thermoosmosis of various electrolyte solutions through anion-exchange membranes, J. Membr. Sci. 17 (1984), 149–160.10.1016/S0376-7388(00)82292-9Search in Google Scholar

[42] M. Tasaka and H. Futamura, The effect of temperature on thermoosmosis, J. Membr. Sci. 28 (1986), 183–190.10.1016/S0376-7388(00)82209-7Search in Google Scholar

[43] M. Tasaka, Thermal membrane potential and thermoosmosis across charged membranes, Pure Appl. Chem. 58 (1986), 1637–1646.10.1351/pac198658121637Search in Google Scholar

[44] M. Tasaka, T. Mizuta and O. Sekiguchi, Mass transfer through polymer membranes due to a temperature gradient, J. Membr. Sci. 54 (1990), 191–204.10.1016/S0376-7388(00)82079-7Search in Google Scholar

[45] M. Tasaka, T. Hirai, R. Kiyono and Y. Aki, Solvent transport across cation-exchange membranes under a temperature difference and an osmotic pressure difference, J. Membr. Sci. 71 (1992), 151–159.10.1016/0376-7388(92)85014-ASearch in Google Scholar

[46] M. Tasaka, T. Urata, R. Kiyono and Y. Aki, Solvent transport across anion-exchange membranes under a temperature difference and an osmotic pressure difference, J. Membr. Sci. 67 (1992), 83–91.10.1016/0376-7388(92)87042-VSearch in Google Scholar

[47] K. Hanaoka, R. Kiyono and M. Tasaka, Thermal membrane potential across anion-exchange membranes in KCL and KIO3 solutions and the transported entropy of ions, J. Membr. Sci. 82 (1993), 255–263.10.1016/0376-7388(93)85190-8Search in Google Scholar

[48] T. Suzuki, Y. Takahashi, R. Kiyono and M. Tasaka, Nonisothermal membrane phenomena across perfluorosulfonic acid-type membranes, Flemion S: Part I. Thermoosmosis and transported entropy of water, Colloid Polym. Sci. 272 (1994), 971–978.10.1007/BF00658895Search in Google Scholar

[49] T. Suzuki, R. Kiyono and M. Tasaka, Solvent transport across anion-exchange membranes under a temperature difference and transported entropy of water, J. Membr. Sci. 92 (1994), 85–93.10.1016/0376-7388(94)80015-4Search in Google Scholar

[50] T. Suzuki, K. Iwano, R. Kiyono and M. Tasaka,Thermoosmosis, and transport entropy of water across hydrocarbonsulfonic acid-type cation-exchange membranes, Bull. Chem. Soc. Jp. 68 (1995), 493–501.10.1246/bcsj.68.493Search in Google Scholar

[51] J. M. Ortiz de Zárate, F. García-López and J. I. Mengual, Temperature polarization in non-isothermal mass transport through membranes, J. Chem. Soc. Faraday Trans. 86 (1990), 2891–2896.10.1039/FT9908602891Search in Google Scholar

[52] Y. A. Gandomi, M. D. Edmundson, F. C. Busby and M. M. Mench, Water management in polymer electrolyte fuel cells through asymmetric thermal and mass transport engineering of the micro-porous layers, J. Electrochem. Soc. 163 (2016), F933-F944.10.1149/2.1331608jesSearch in Google Scholar

[53] P. J. S. Vie and S. Kjelstrup, Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell, Electrochim. Acta49 (2004), 1069–1107.10.1016/j.electacta.2003.10.018Search in Google Scholar

[54] S. Kjelstrup and D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous Systems, Series on Advances in Statistical Mechanics, Volume 16, World Scientific Publishing Co., Singapore, 2008.10.1142/6672Search in Google Scholar

[55] K. S. Førland, T. Førland and S. Kjelstrup Ratkje, Irreversible Thermodynamics. Theory and Applications, Wiley & Sons, Chichester, 1988.Search in Google Scholar

[56] A. Katalsky and P. F. Curran, Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, 1967.Search in Google Scholar

[57] V. M. Barragán, J. P. G. Villaluenga, M. P. Godino, M. A. Izquierdo-Gil, C. Ruiz-Bauzá and B. Seoane, Experimental estimation of equilibrium and transport properties of sulfonated cation-exchange membranes with different morphologies, J. Colloid Interface Sci. 333 (2009), 497–502.10.1016/j.jcis.2009.02.015Search in Google Scholar

[58] J. P. G. Villaluenga, V. M. Barragán, M. A. Izquierdo-Gil, M. P. Godino, B. Seoane and C. Ruiz-Bauzá, Comparative study of liquid uptake and permeation characteristics of sulfonated cation-exchange membranes in water and methanol, J. Membr. Sci. 323 (2008), 421–427.10.1016/j.memsci.2008.06.049Search in Google Scholar

[59] J. P. G. Villaluenga, V. M. Barragán, M. A. Izquierdo-Gil, M. P. Godino, B. Seoane and C. Ruiz-Bauzá, Fluid flow modeling in a sulfonated cation-exchange membrane, J. Appl. Polym. Sci. 114 (2009), 1412–1416.10.1002/app.30757Search in Google Scholar

[60] V. M. Barragán and S. Muñoz, Influence of a microwave irradiation of the swelling and permeation properties of a Nafion membrane, J Membr. Sep. Technol. 4 (2015), 25–31.10.6000/1929-6037.2015.04.02.1Search in Google Scholar

[61] H. S. Frank and W. Y. Wen, Ion-solvent interaction structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure, Discuss. Faraday Soc. 24 (1957), 133–140.10.1039/df9572400133Search in Google Scholar

[62] Y. Marcus, Effect of ions on the structure of water, Pure Appl. Chem. 82 (2010), 1889–1899.10.1351/PAC-CON-09-07-02Search in Google Scholar

[63] P. Gallo, D. Corradini and M. Rovere, Ion hydration and structural properties of water in aqueous solutions at normal and supercooled conditions: A test of the structure making and braking concept, Phys. Chem. Chem. Phys. 13 (2011), 19814–19822.10.1039/c1cp22166cSearch in Google Scholar

[64] B. V. Derjaguin and N. V. Churaev, Flow of nonfreezing water interlayers and frost heaving, Prog. Surf. Sci. 43 (1993), 232–240.10.1016/0079-6816(93)90033-RSearch in Google Scholar

Received: 2016-12-22
Revised: 2017-2-15
Accepted: 2017-3-22
Published Online: 2017-4-14
Published in Print: 2017-6-27

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2016-0088/html
Scroll to top button