Home An Investigation of Flank Wear Land Inclination in Orthogonal Machining
Article
Licensed
Unlicensed Requires Authentication

An Investigation of Flank Wear Land Inclination in Orthogonal Machining

  • Vishal Datt Kohir EMAIL logo , Subhasgoud Patil and Suresh Dundur
Published/Copyright: April 18, 2013
Become an author with De Gruyter Brill

Abstract

The sharp freshly ground tool forms wear land with machining. The present work attempts to measure the non-zero inclination of flank wear land with respect to cutting direction and study the effect of the machining parameters, like speed, feed, rake angle and clearance angle, on the formation of non-zero flank wear land inclination. The experimental plan was based on the face centred, central composite design (CCD). The results clearly indicated the presence of non-zero flank wear land inclination with the direction of cutting. The interactions between machining parameter strongly influences flank wear land inclination. This information may be helpful in improving existing machining model or to develop a new model.


Department of Industrial and Production Engineering, Basaveshwar Engineering College, Bagalkot, Karnataka, India

Received: 2012-08-05
Accepted: 2012-12-23
Published Online: 2013-04-18
Published in Print: 2013-04-17

©[2013] by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Masthead
  2. Effect of Some Lubricants on the Flow Characteristics of ‘EPDM’ Rubber Under Compressive Load
  3. Friction Stir Welds of AA6351-T6 and AA2024-T6 Dissimiler Aluminium Alloys
  4. Effect of Welding Parameters on Pitting Corrosion Rate in 3.5N NaCl of Pulsed Current Micro Plasma Arc Welded AISI 304L Sheets
  5. An Investigation of Flank Wear Land Inclination in Orthogonal Machining
  6. Modeling of Radial Over Cut in Electrochemical Machining of Al-B4C MMC Using Response Surface Methodology
  7. Fundamental Research on a Rational Steelmaking Slag Recycling System by Phosphorus Separation and Collection
  8. KTH Steel Scrap Model – Iron and Steel Flow in the Swedish Society 1889–2010
  9. Direct Electrochemical Reduction of Titanium-Bearing Compounds to Titanium-Silicon Alloys in Molten Calcium Chloride
  10. In Situ Observation of the Evolution of Intragranular Acicular Ferrite at Mg-containing Inclusions in 16Mn Steel
  11. The Physical Properties of Slags for Electro-slag Remelting in CaF2-CaO-Al2O3-SiO2 System
  12. Freeze-lining Formation and Microstructure in a Direct-to-blister Flash Smelting Slag
  13. The Mechanism of Dross Formation during Hot-dip Al-Zn Alloy Coating Process
  14. Solidification Behaviour of Slags: The Single Hot Thermocouple Technique
  15. Investigation of Continuous Casting Slag Films Sampled on Site and Comparison with Laboratory Results
  16. Thermal Conductivity of R-Na2O-SiO2 (R = Al2O3, CaO) Melts
  17. Investigation of Blowing High Silicon Hot Metal by Double Slag Process
  18. An Investigation of Electro-deoxidation Process for Producing Titanium from Dense Titanium Dioxide Cathode
  19. Interaction between Molten Steel, Alumina Lining Refractory and Slag Phase
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jmsp-2012-0029/html
Scroll to top button