Startseite Mathematik A finite difference method for the very weak solution to a Cauchy problem for an elliptic equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A finite difference method for the very weak solution to a Cauchy problem for an elliptic equation

  • Dinh Nho Hào EMAIL logo , Le Thi Thu Giang , Sergey Kabanikhin und Maxim Shishlenin
Veröffentlicht/Copyright: 11. Oktober 2018

Abstract

We introduce the concept of very weak solution to a Cauchy problem for elliptic equations. The Cauchy problem is regularized by a well-posed non-local boundary value problem whose solution is also understood in a very weak sense. A stable finite difference scheme is suggested for solving the non-local boundary value problem and then applied to stabilizing the Cauchy problem. Some numerical examples are presented for showing the efficiency of the method.

MSC 2010: 65N20; 65N60; 35J15

Funding statement: The work by Dinh Nho Hào was partially supported by Vietnam Academy of Science and Technology (VAST) under the Grant VAST.HTQT.NGA.09/17-18, the work by S. I. Kabanikhin and M. A. Shishlenin was partially supported by RFBR (Grant 17-51-540004, 16-29-15120, 16-01-00755). Part of this work has been done during Dinh Nho Hào’s stay at Vietnam Institute for Advanced Study in Mathematics.

References

[1] C. Bardos, Hadamard et les équations aux dérivées partielles, Matapli 103 (2014), 21–32. Suche in Google Scholar

[2] A. V. Bicadze and A. A. Samarskiĭ, Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk SSSR 185 (1969), 739–740. Suche in Google Scholar

[3] V. B. Glasko, E. A. Mudretsova and V. N. Strakhov, Inverse problems in gravimetry and magnetometry, Ill-Posed Problems in the Natural Sciences (in Russian), Adv. Sci. Tech. USSR Math. Mech. Ser., Moscow State University, Moscow (1987), 89–102. Suche in Google Scholar

[4] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover Publications, New York, 1953. 10.1063/1.3061337Suche in Google Scholar

[5] D. N. Hào, N. V. Duc and D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations, Inverse Problems 25 (2009), no. 5, Article ID 055002. 10.1088/0266-5611/25/5/055002Suche in Google Scholar

[6] D. N. Hào, T. D. ú’c Vân and R. Gorenflo, Towards the Cauchy problem for the Laplace equation, Partial Differential Equations. Part 1 (Warsaw 1990), Banach Center Publ. 27, Polish Academy of Sciences, Warsaw (1992), 111–128. 10.4064/-27-1-111-128Suche in Google Scholar

[7] V. A. Il’in, On solvability of mixed problems for hyperbolic and parabolic equations (in Russian), Uspekhi Mat. Nauk 15(92) (1960), no. 2, 97–154; translated in Russian Math. Surveys 15 (1960) no. 2, 85–142. 10.1070/RM1960v015n02ABEH004217Suche in Google Scholar

[8] V. A. Il’in and I. A. Shishmarev, On the connection between the classical and the generalized solution to Dirichlet’s problem and to the problem of eigenvalues (in Russian), Dokl. Akad. Nauk SSSR 126 (1959), 1176–1179. Suche in Google Scholar

[9] V. A. Il’in and I. A. Shishmarev, On the equivalence of the systems of generalized and classical eigenfunctions (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 757–774. Suche in Google Scholar

[10] V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed., Appl. Math. Sci. 127, Springer, New York, 2006. Suche in Google Scholar

[11] S. I. Kabanikhin, Definitions and examples of inverse and ill-posed problems, J. Inverse Ill-Posed Probl. 16 (2008), no. 4, 317–357. 10.1515/JIIP.2008.019Suche in Google Scholar

[12] S. I. Kabanikhin, Y. S. Gasimov, D. B. Nurseitov, M. A. Shishlenin, B. B. Sholpanbaev and S. Kasenov, Regularization of the continuation problem for elliptic equations, J. Inverse Ill-Posed Probl. 21 (2013), no. 6, 871–884. 10.1515/jip-2013-0041Suche in Google Scholar

[13] S. I. Kabanikhin and A. L. Karchevsky, Optimizational method for solving the Cauchy problem for an elliptic equation, J. Inverse Ill-Posed Probl. 3 (1995), no. 1, 21–46. 10.1515/jiip.1995.3.1.21Suche in Google Scholar

[14] S. I. Kabanikhin, D. B. Nurseitov, M. A. Shishlenin and B. B. Sholpanbaev, Inverse problems for the ground penetrating radar, J. Inverse Ill-Posed Probl. 21 (2013), no. 6, 885–892. 10.1515/jip-2013-0057Suche in Google Scholar

[15] S. I. Kabanikhin and M. A. Shishlenin, Regularization of the decision prolongation problem for parabolic and elliptic equations from border part, Eurasian J. Math. Comp. Appl. 2 (2014), no. 2, 81–91. 10.32523/2306-6172-2014-2-2-81-91Suche in Google Scholar

[16] S. I. Kabanikhin, M. A. Shishlenin, D. B. Nurseitov, A. T. Nurseitova and S. E. Kasenov, Comparative analysis of methods for regularizing an initial boundary value problem for the Helmholtz equation, J. Appl. Math. 2014 (2014), Article ID 786326. 10.1155/2014/786326Suche in Google Scholar

[17] O. A. Ladyženskaya, On solvability of the fundamental boundary problems for equations of parabolic and hyperbolic type (in Russian), Dokl. Akad. Nauk SSSR (N.S.) 97 (1954), 395–398. Suche in Google Scholar

[18] O. A. Ladyženskaya, On non-stationary operator equations and their applications to linear problems of mathematical physics (in Russian), Mat. Sb. (N.S.) 45(87) (1958), 123–158. Suche in Google Scholar

[19] O. A. Ladyžhenskaya, The Boundary Value Problems of Mathematical Physics, Appl. Math. Sci. 49, Springer, New York, 1985. 10.1007/978-1-4757-4317-3Suche in Google Scholar

[20] E. M. Landis, On some properties of solutions of elliptic equations (in Russian), Dokl. Akad. Nauk SSSR (N.S.) 107 (1956), 640–643. Suche in Google Scholar

[21] M. M. Lavrent’ev, On Cauchy’s problem for Laplace’s equation (in Russian), Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 205–206. Suche in Google Scholar

[22] M. M. Lavrent’ev, On the Cauchy problem for Laplace equation (in Russian), Izv. Akad. Nauk SSSR. Ser. Mat. 120 (1956), 819–842. Suche in Google Scholar

[23] M. M. Lavrent’ev, On the problem of Cauchy for linear elliptic equations of the second order (in Russian), Dokl. Akad. Nauk SSSR (N.S.) 112 (1957), 195–197. Suche in Google Scholar

[24] M. M. Lavrent’ev, Some Improperly Posed Problems in Mathematical Physics, Springer, New York, 1967. 10.1007/978-3-642-88210-4Suche in Google Scholar

[25] M. M. Lavrent’ev, V. G. Romanov and G. P. Shishatskii, Ill-Posed Problems in Mathematical Physics and Analysis, American Mathematical Society, Providence, 1986. 10.1090/mmono/064Suche in Google Scholar

[26] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, New York, 1971. 10.1007/978-3-642-65024-6Suche in Google Scholar

[27] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. II, Springer, New York, 1972. 10.1007/978-3-642-65161-8Suche in Google Scholar

[28] L. E. Payne, Improperly Posed Problems in Partial Differential Equations, Society for Industrial and Applied Mathematics, Philadelphia, 1975. 10.1137/1.9781611970463Suche in Google Scholar

[29] C. Pucci, Sui problemi di Cauchy non “ben posti”, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 18 (1955), 473–477. Suche in Google Scholar

[30] C. Pucci, Discussione del problema di Cauchy per le equazioni di tipo ellittico, Ann. Mat. Pura Appl. (4) 46 (1958), 131–153. 10.1007/BF02412913Suche in Google Scholar

[31] C. Pucci, Some Topics in Parabolic and Elliptic Equations, Lecture Ser. 36, University of Maryland, College Park, 1958. Suche in Google Scholar

[32] A. A. Samarskii, The Theory of Difference Schemes, Monogr. Textb. Pure Appl. Math. 240, Marcel Dekker, New York, 2001. 10.1201/9780203908518Suche in Google Scholar

[33] A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations. Vol. I: Direct Methods, Birkhäuser, Basel, 1989. 10.1007/978-3-0348-9272-8Suche in Google Scholar

[34] A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations. Vol. II: Iterative Methods, Birkhäuser, Basel, 1989. 10.1007/978-3-0348-9272-8Suche in Google Scholar

[35] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., Springer, New York, 1979. 10.1007/978-1-4757-5592-3Suche in Google Scholar

[36] A. N. Tihonov, On the solution of ill-posed problems and the method of regularization (in Russian), Dokl. Akad. Nauk SSSR 151 (1963), 501–504. Suche in Google Scholar

[37] A. N. Tikhonov, On the stability of inverse problems (in Russian), C. R. (Doklady) Acad. Sci. URSS (N.S.) 39 (1943), 176–179. Suche in Google Scholar

[38] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, John Wiley & Sons, New York, 1977. Suche in Google Scholar

[39] P. N. Vabishchevich, Numerical solution of nonlocal elliptic problems (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. (1983), no. 5, 13–19. Suche in Google Scholar

[40] P. N. Vabishchevich and A. Y. Denisenko, Regularization of nonstationary problems for elliptic equations, Inzh.-Fiz. Zh. 65 (1993), no. 6, 690–694. 10.1007/BF00861941Suche in Google Scholar

[41] P. N. Vabishchevich and P. A. Pulatov, A method of numerical solution of the Cauchy problem for elliptic equations (in Russian), Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. (1984), no. 2, 3–8. Suche in Google Scholar

Received: 2018-07-04
Revised: 2018-09-13
Accepted: 2018-09-13
Published Online: 2018-10-11
Published in Print: 2018-12-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2018-0060/html?lang=de
Button zum nach oben scrollen