Startseite Mathematik A numerical algorithm for constructing an individual mathematical model of HIV dynamics at cellular level
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A numerical algorithm for constructing an individual mathematical model of HIV dynamics at cellular level

  • H. Thomas Banks , Sergey I. Kabanikhin , Olga I. Krivorotko und Darya V. Yermolenko EMAIL logo
Veröffentlicht/Copyright: 16. November 2018

Abstract

In this paper a problem of specifying HIV-infection parameters and immune response using additional measurements of the concentrations of the T-lymphocytes, the free virus and the immune effectors at fixed times for a mathematical model of HIV dynamics is investigated numerically. The problem of the parameter specifying of the mathematical model (an inverse problem) is reduced to a problem of minimizing an objective function describing the deviation of the simulation results from the experimental data. A genetic algorithm for solving the least squares function minimization problem is implemented and investigated. The results of a numerical solution of the inverse problem are analyzed.

MSC 2010: 92-08

Funding statement: The stability investigation (Section 3) was supported by the grant No. MK-1214.2017.1 of the President of Russian Federation, the analysis of numerical solving of the inverse problem (Section 4) was supported by the grant No. 18-71-10044 of Russian Science Foundation, the investigation of confidence intervals (Section 5) was supported by the grant No. AFOSR FA9550-15-1-0298 of U.S. Air Force Office of Scientific Research.

References

[1] B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math. 184 (2005), no. 1, 10–49. 10.1016/j.cam.2005.02.004Suche in Google Scholar

[2] H. T. Banks, M. Davidian, S. Hu, G. M. Kepler and E. S. Rosenberg, Modeling HIV immune response and validation with clinical data, J. Biol. Dyn. 2 (2008), 357–385. 10.1080/17513750701813184Suche in Google Scholar PubMed PubMed Central

[3] H. T. Banks, S. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2014. 10.1201/b16760Suche in Google Scholar

[4] H. T. Banks and M. L. Joyner, Information content in data sets: A review of methods for interrogation and model comparison, J. Inverse Ill-Posed Probl. 26 (2018), no. 3, 423–452. 10.1515/jiip-2017-0096Suche in Google Scholar

[5] G. Bocharov, A. Kim, A. Krasovskii, V. Chereshnev, V. Glushenkova and A. Ivanov, An extremal shift method for control of HIV infection dynamics, Russian J. Numer. Anal. Math. Modelling 30 (2015), no. 1, 11–25. 10.1515/rnam-2015-0002Suche in Google Scholar

[6] D. S. Callaway and A. S. Perelson, HIV-I infection and low steady state viral loads, Bull. Math. Biol. 64 (2001), 29–64. 10.1006/bulm.2001.0266Suche in Google Scholar PubMed

[7] M. Davidian and D. Giltinan, Nonlinear Models for Repeated Measurement Data, Chapman & Hall, London, 1998. Suche in Google Scholar

[8] B. P. Demidovič, I. A. Maron and E. Z. Šuvalova, Numerical Methods of Analysis, 3rd ed., Nauka, Moscow, 1967. Suche in Google Scholar

[9] H. W. Engl, C. Flamm, P. Kügler, J. Lu, S. Müller and P. Schuster, Inverse problems in systems biology, Inverse Problems 25 (2009), no. 12, Article ID 123014. 10.1088/0266-5611/25/12/123014Suche in Google Scholar

[10] D. Greenhalgh and S. Marshall, Convergence criteria for genetic algorithms, SIAM J. Comput. 30 (2000), no. 1, 269–282. 10.1137/S009753979732565XSuche in Google Scholar

[11] S. I. Kabanikhin, Inverse and Ill-posed Problems, De Gruyter, Berlin, 2012. 10.1515/9783110224016Suche in Google Scholar

[12] S. I. Kabanikhin and O. I. Krivorotko, Identification of biological models described by systems of nonlinear differential equations, J. Inverse Ill-Posed Probl. 23 (2015), no. 5, 519–527. 10.1515/jiip-2015-0072Suche in Google Scholar

[13] S. I. Kabanikhin, O. I. Krivorotko and V. Kashtanova, A combined numerical algorithm for reconstructing the mathematical model for tuberculosis transmission with control programs, J. Inverse Ill-Posed Probl. 26 (2018), no. 1, 121–131. 10.1515/jiip-2017-0019Suche in Google Scholar

[14] S. I. Kabanikhin, O. I. Krivorotko, D. V. Yermolenko, V. A. Latyshenko and V. N. Kashtanova, Inverse problems of immunology and epidemiology, Eurasian J. Math. Comp. Appl. 5(2) (2017), 14–35. 10.32523/2306-6172-2017-5-2-14-35Suche in Google Scholar

[15] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (1965), no. 4, 308–313. 10.1093/comjnl/7.4.308Suche in Google Scholar

[16] A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41 (1999), no. 1, 3–44. 10.1137/S0036144598335107Suche in Google Scholar

[17] S. Qiu, A. Mcsweeny, S. Choulet, A. Saha-Mandal, L. Fedorova and A. Fedorov, Genome evolution by matrix algorithms (GEMA): Cellular automata approach to population genetics, Genome Biol Evol. 6 (2014), 988–999. 10.1093/gbe/evu075Suche in Google Scholar PubMed PubMed Central

[18] G. A. F. Seber and C. J. Wild, Nonlinear Regression, Wiley & Sons, Hoboken, 2003. 10.1002/9780471722199Suche in Google Scholar

[19] R. R. Sharapov and A. V. Lapshin, Convergence of Genetic Algorithms, Pattern Recogni. Image Anal. 16 (2005), 392–397. 10.1134/S1054661806030084Suche in Google Scholar

Received: 2018-03-19
Revised: 2018-09-13
Accepted: 2018-09-13
Published Online: 2018-11-16
Published in Print: 2018-12-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2018-0019/pdf
Button zum nach oben scrollen