Startseite Contrast enhanced tomographic reconstruction of vascular blood flow with first order and second order adjoint methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Contrast enhanced tomographic reconstruction of vascular blood flow with first order and second order adjoint methods

  • Bruno Sixou EMAIL logo
Veröffentlicht/Copyright: 11. September 2018

Abstract

In this work, we study the reconstruction of blood velocity with contrast enhanced computed tomography with a tomographic projections perpendicular to the main flow field direction. The inverse problem is regularized with a convection-diffusion partial differential equation. The velocity field is reconstructed with first order and second order adjoint methods with a receding optimal control method and tested on simple phantoms.

Award Identifier / Grant number: ANR-11-LABX-0063

Award Identifier / Grant number: ANR-11-IDEX-0007

Funding statement: This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

References

[1] R. A. Adams, Sobolev Spaces, Pure Appl. Math. 65, Academic Press, New York, 1975. Suche in Google Scholar

[2] A. Borzì, K. Ito and K. Kunisch, An optimal control approach to optical flow computation, Internat. J. Numer. Methods Fluids 40 (2002), no. 1–2, 231–240. 10.1002/fld.273Suche in Google Scholar

[3] H. Choi, Suboptimal control of turbulent flow using control theory, Proceedings of the International Symposium on Mathematical Modelling of Turbulent Flows, Tokyo (1995). Suche in Google Scholar

[4] M. Choulli, Une introduction aux problèmes inverses elliptiques et paraboliques, Math. Appl. (Berlin) 65, Springer, Berlin, 2009. 10.1007/978-3-642-02460-3Suche in Google Scholar

[5] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10 (1999), no. 1, 177–182. 10.1137/S1052623497318992Suche in Google Scholar

[6] P. Deuflhard, Newton Methods for Nonlinear Problems, Springer Ser. Comput. Math. 35, Springer, Berlin, 2004. Suche in Google Scholar

[7] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 1998. Suche in Google Scholar

[8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964. Suche in Google Scholar

[9] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim. 2 (1992), no. 1, 21–42. 10.1137/0802003Suche in Google Scholar

[10] R. Herzog and K. Kunisch, Algorithms for PDE-constrained optimization, GAMM-Mitt. 33 (2010), no. 2, 163–176. 10.1002/gamm.201010013Suche in Google Scholar

[11] M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim. 40 (2001), no. 3, 925–946. 10.1137/S0363012999361810Suche in Google Scholar

[12] S. Kindermann and A. Leitão, On regularization methods for inverse problems of dynamic type, Numer. Funct. Anal. Optim. 27 (2006), no. 2, 139–160. 10.1080/01630560600569973Suche in Google Scholar

[13] J. G. Korporaal, M. R. Benz, S. T. Schindera, T. G. Flohr and B. Schmidt, Contrast gradient-based blood velocimetry with computed tomography, Invest. Radiol. 51 (2016), 1–9. 10.1097/RLI.0000000000000202Suche in Google Scholar PubMed

[14] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. 23, American Mathematical Society, Providence, 1968. 10.1090/mmono/023Suche in Google Scholar

[15] A. Lipponen, A. Seppänen and J. P. Kaipio, Reduced-order estimation of nonstationary flows with electrical impedance tomography, Inverse Problems 26 (2010), no. 7, Article ID 074010. 10.1088/0266-5611/26/7/074010Suche in Google Scholar

[16] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press, Cambridge, 1994. Suche in Google Scholar

[17] C. Mory, V. Auvray, B. Zhang, M. Grass, D. Schafer, S. J. Chen, J. D. Carrol, S. Rit, F. Peyrin, P. Douek and L. Boussel, Cardiac C-arm computed tomography using a 3d+time ROI reconstruction method with spatial and temporal regularization, Med. Phys. 41 (2014), Article ID 021903. 10.1118/1.4860215Suche in Google Scholar PubMed

[18] F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart, 1986. 10.1007/978-3-663-01409-6Suche in Google Scholar

[19] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006. Suche in Google Scholar

[20] S. Prevrhal, C. H. Forsythe, R. J. Harnish, M. Saeed and B. M. Yeh, CT angiographic measurement of vascular blood fowl velocity by using projection data, Radiology 261 (2011), 923–929. 10.1148/radiol.11110617Suche in Google Scholar PubMed

[21] T. Roubíček, Nonlinear Partial Differential Equations with Applications, 2nd ed., Internat. Ser. Numer. Math. 153, Birkhäuser/Springer, Basel, 2013. 10.1007/978-3-0348-0513-1Suche in Google Scholar

[22] U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen, Efficient algorithms for the regularization of dynamic inverse problems. I: Theory, Inverse Problems 18 (2002), 645–658. 10.1088/0266-5611/18/3/308Suche in Google Scholar

[23] U. Schmitt, A. K. Louis, C. Wolters and M. Vauhkonen, Efficient algorithms for the regularization of dynamic inverse problems. II: Applications, Inverse Problems 18 (2002), no. 3, 659–676. 10.1088/0266-5611/18/3/309Suche in Google Scholar

[24] A. Seppänen, M. Vauhkonen, P. J. Vauhkonen, E. Somersalo and J. P. Kaipio, State estimation with fluid dynamical evolution models in process tomography—an application to impedance tomography, Inverse Problems 17 (2001), no. 3, 467–483. 10.1088/0266-5611/17/3/307Suche in Google Scholar

[25] A. Seppänen, A. Voutilainen and J. P. Kaipio, State estimation in process tomography—reconstruction of velocity fields using EIT, Inverse Problems 25 (2009), no. 8, Article ID 085009. 10.1088/0266-5611/25/8/085009Suche in Google Scholar

[26] B. Sixou, L. Boussel and M. Sigovan, Contrast enhanced computerized tomography measurement of vascular blood flow, J. Phys. Conf. Ser. 756 (2016), Article ID 012003. 10.1088/1742-6596/756/1/012003Suche in Google Scholar

[27] B. Sixou, L. Boussel and M. Sigovan, Vascular blood flow reconstruction with contrast-enhanced computerized tomography, Inverse Probl. Sci. Eng. 26 (2018), no. 6, 855–876. 10.1080/17415977.2017.1361421Suche in Google Scholar

[28] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., Oxford Appl. Math. Comp. Sci. Ser., Oxford University Press, New York, 1985. Suche in Google Scholar

[29] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-posed Problems, Math. Appl. 328, Kluwer Academic, Dordrecht, 1995. 10.1007/978-94-015-8480-7Suche in Google Scholar

[30] Y. Wang, A. G. Yagola and C. Yang, Optimization and Regularization for Computational Inverse Problems and Applications, Springer, New York, 2010. 10.1007/978-3-642-13742-6Suche in Google Scholar

[31] E. Zeidler, Applied Functional Analysis, Appl. Math. Sci. 109, Springer, New York, 1995. 10.1007/978-1-4612-0815-0Suche in Google Scholar

Received: 2017-11-20
Accepted: 2018-07-09
Published Online: 2018-09-11
Published in Print: 2019-02-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2017-0107/html
Button zum nach oben scrollen