Abstract
In this paper we present a study of optimal control problem for the unsteady Navier–Stokes equations. We discuss the existence of the solution, adopt a new numerical resolution for this problem and combine Euler explicit scheme in time and both of methods spectral and finite elements in space. Finally, we give some numerical results proving the effectiveness of our approach.
References
[1] R. Agroum, S. Mani Aouadi, C. Bernardi and J. Satouri, Spectral discretization of the Navier–Stokes equations coupled with the heat equation, ESAIM Math. Model. Numer. Anal. 49 (2015), no. 3, 621–639. 10.1051/m2an/2014049Suche in Google Scholar
[2] C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis, North-Holland, Amsterdam (1997), 209–485. 10.1016/S1570-8659(97)80003-8Suche in Google Scholar
[3] M. Böhm, M. A. Demetriou, S. Reich and I. G. Rosen, Model reference adaptive control of distributed parameter systems, SIAM J. Control Optim. 36 (1998), no. 1, 33–81. 10.1137/S0363012995279717Suche in Google Scholar
[4] D. Bresch-Pietri and M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica J. IFAC 50 (2014), no. 5, 1407–1415. 10.1016/j.automatica.2014.02.040Suche in Google Scholar
[5] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980/81), no. 1, 1–25. 10.1007/BF01395985Suche in Google Scholar
[6] J. C. De Los Reyes and R. Griesse, State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations, J. Math. Anal. Appl. 343 (2008), no. 1, 257–272. 10.1016/j.jmaa.2008.01.029Suche in Google Scholar
[7] A. V. Fursikov, M. D. Gunzburger and L. S. Hou, Boundary value problems and optimal boundary control for the Navier–Stokes system: The two-dimensional case, SIAM J. Control Optim. 36 (1998), no. 3, 852–894. 10.1137/S0363012994273374Suche in Google Scholar
[8] A. V. Fursikov, M. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim. 43 (2005), no. 6, 2191–2232. 10.1137/S0363012904400805Suche in Google Scholar
[9] V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, Lecture Notes in Math. 749, Springer, Berlin, 1979. 10.1007/BFb0063447Suche in Google Scholar
[10] V. Girault and P.-A. Raviart, An analysis of upwind schemes for the Navier–Stokes equations, SIAM J. Numer. Anal. 19 (1982), no. 2, 312–333. 10.1137/0719019Suche in Google Scholar
[11] E. Hopf, On non-linear partial differential equations, Lecture Series of the Symposium on Partial Differential Equations (Berkeley 1955), University of Kansas, Lawrence (1957), 1–31. Suche in Google Scholar
[12] C. Jia, A note on the model reference adaptive control of linear parabolic systems with constant coefficients, J. Syst. Sci. Complex. 24 (2011), no. 6, 1110–1117. 10.1007/s11424-011-0042-9Suche in Google Scholar
[13] I. Neitzel and F. Tröltzsch, On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints, ESAIM Control Optim. Calc. Var. 15 (2009), no. 2, 426–453. 10.1051/cocv:2008038Suche in Google Scholar
[14] M. A. Younes and S. Abidi, The Navier–Stokes problem in the velocity-pressure formulation, Int. J. Appl. Math. 24 (2011), no. 3, 469–477. Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach
- On an inverse spectral problem for one integro-differential operator of fractional order
- Parameter identification for the linear wave equation with Robin boundary condition
- Numerical resolution of optimal control problem for the in-stationary Navier–Stokes equations
- On the asymptotic study of transmission problem in a thin domain
- A coupled complex boundary expanding compacts method for inverse source problems
- Contrast enhanced tomographic reconstruction of vascular blood flow with first order and second order adjoint methods
- On an asymmetric backward heat problem with the space and time-dependent heat source on a disk
- Semi-heuristic parameter choice rules for Tikhonov regularisation with operator perturbations
- The enclosure method for inverse obstacle scattering over a finite time interval: V. Using time-reversal invariance
Artikel in diesem Heft
- Frontmatter
- Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach
- On an inverse spectral problem for one integro-differential operator of fractional order
- Parameter identification for the linear wave equation with Robin boundary condition
- Numerical resolution of optimal control problem for the in-stationary Navier–Stokes equations
- On the asymptotic study of transmission problem in a thin domain
- A coupled complex boundary expanding compacts method for inverse source problems
- Contrast enhanced tomographic reconstruction of vascular blood flow with first order and second order adjoint methods
- On an asymmetric backward heat problem with the space and time-dependent heat source on a disk
- Semi-heuristic parameter choice rules for Tikhonov regularisation with operator perturbations
- The enclosure method for inverse obstacle scattering over a finite time interval: V. Using time-reversal invariance