Startseite Identification of mathematical model of bacteria population under the antibiotic influence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Identification of mathematical model of bacteria population under the antibiotic influence

  • Simon Serovajsky , Daniyar Nurseitov EMAIL logo , Sergey Kabanikhin , Anvar Azimov , Alexandr Ilin und Rinat Islamov
Veröffentlicht/Copyright: 9. Dezember 2017

Abstract

This work is devoted to the identification of a mathematical model of bacteria population under the antibiotic influence, based on the solution of the corresponding inverse problems. These problems are solved by the gradient method, genetic algorithm and Nelder–Mead method. Calculations are made using model and real data.

MSC 2010: 49N45; 65L09

Award Identifier / Grant number: 1746/GF4

Funding statement: This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan under the grant number 1746/GF4 and by the Ministry for Investments and Development under the project number 006/156.

Acknowledgements

We would like to thank M. V. Lankina and S. Kassymbekova of the Scientific Center of Anti-infectious Drugs for the natural experiment and discussion of these results.

References

[1] A. Azimov, S. Kasenov, D. Nurseitov and S. Serovajsky, Inverse problem for the Verhulst equation of limited population growth with discrete experiment data, AIP Conf. Proc. 1759 (2016), 10.1063/1.4959651. 10.1063/1.4959651Suche in Google Scholar

[2] M. J. Bonten, D. J. Austin and M. Lipsitch, Understanding the spread of antibiotic resistant pathogens in hospitals: Mathematical models as tools for control, Clin Infect Dis. 33 (2001), no. 10, 1739–1746. 10.1086/323761Suche in Google Scholar PubMed

[3] F. Chamchod and S. Ruan, Modeling methicillin-resistant staphylococcus aureus in hospitals: Transmission dynamics, antibiotic usage and its history, Theoret. Biol. Medical Model. 9 (2012), 10.1186/1742-4682-9-25. 10.1186/1742-4682-9-25Suche in Google Scholar PubMed PubMed Central

[4] D. S. Davies, J. Watson and L. Shallcross, A global overview of antimicrobial resistance, AMR Control (2015), 12–16. Suche in Google Scholar

[5] R. J. Fair and Y. Tor, Antibiotics and bacterial resistance in the 21st century, Perspect Medicin Chem. 6 (2014), 25–64. 10.4137/PMC.S14459Suche in Google Scholar PubMed PubMed Central

[6] S. Gandra, N. Mojica, A. Ashok, B. R. Das and R. Laxminarayan, Trends in antibiotic resistance among bacteria isolated from blood cultures using a large private laboratory network data in India: 2008–2014, Antimicrobial Resistance Infection Control 4 (2015), 10.1186/2047-2994-4-S1-O42. 10.1186/2047-2994-4-S1-O42Suche in Google Scholar

[7] J. H. Holland, Adaptation in Natural and Artificial Systems. An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, 1975. Suche in Google Scholar

[8] A. Ilin, R. Islamov, S. Kasenov, D. Nurseitov and S. Serovajsky, Mathematical modeling of lung infection and antibiotic resistance, The Ninth International Conference on Bioinformatics of Genome Regulation and Structure/Systems Biology (Novosibirsk 2014), Publishing House SB RAS, Novorsibirsk (2014), 68–68. Suche in Google Scholar

[9] S. I. Kabanikhin, Inverse and Ill-Posed Problems. Theory and Applications, Inverse Ill-posed Probl. Ser. 55, De Gruyter, Berlin, 2012. 10.1515/9783110224016Suche in Google Scholar

[10] S. Kassymbekova, B. Kerimzhanova and A. Ilin, The effect of the drug FS-1 on the cytoplasmic membrane of E.coli, Izv. NAN RK Biol. Medic. (2016), no. 2, 28–33. Suche in Google Scholar

[11] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (1965), no. 4, 308–313. 10.1093/comjnl/7.4.308Suche in Google Scholar

[12] S. Serovajsky, A. Azimov, A. Ilin, R. Islamov, S. Kasenov, M. Lankina and D. Nurseitov, Identification of nonlinear differential systems for bacteria population under antibiotics influence, New Trends in Analysis and Interdisciplinary Applications, Birkhäuser, Cham (2017), 143–149. 10.1007/978-3-319-48812-7_19Suche in Google Scholar

[13] V. Vol’terra, Mathematical Theory of Struggle for Existence (in Russian), “Nauka”, Moscow, 1976. Suche in Google Scholar

[14] G. F. Webb, E. M. C. D’Agata, P. Magal and S. Ruan, A model of antibiotic-resistant bacterial epidemics in hospitals, Proc. Natl. Acad. Sci. USA 102 (2005), no. 37, 13343–13348. 10.1073/pnas.0504053102Suche in Google Scholar PubMed PubMed Central

[15] M. H. Zwietering, I. Jongenburger, F. M. Rombouts and K. van’t Riet, Modeling of the bacterial growth curve, Appl. Environ. Microbiol. 56 (1990), no. 6, 1875–1881. 10.1128/aem.56.6.1875-1881.1990Suche in Google Scholar PubMed PubMed Central

Received: 2017-11-01
Accepted: 2017-11-07
Published Online: 2017-12-09
Published in Print: 2018-10-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2017-0102/html?lang=de
Button zum nach oben scrollen