Home Ambarzumyan-type theorems on a time scale
Article
Licensed
Unlicensed Requires Authentication

Ambarzumyan-type theorems on a time scale

  • Ahmet Sinan Ozkan ORCID logo EMAIL logo
Published/Copyright: March 21, 2018

Abstract

In this paper, we give Ambarzumyan-type theorems for a Sturm–Liouville dynamic equation with Robin boundary conditions on a time scale. Under certain conditions, we prove that the potential can be specified from only the first eigenvalue.

MSC 2010: 31B20; 39A12; 34B24

References

[1] R. P. Agarwal, M. Bohner and P. J. Y. Wong, Sturm–Liouville eigenvalue problems on time scales, Appl. Math. Comput. 99 (1999), no. 2–3, 153–166. 10.1016/S0096-3003(98)00004-6Search in Google Scholar

[2] V. A. Ambarzumyan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53 (1929), 690–695. 10.1007/BF01330827Search in Google Scholar

[3] P. Amster, P. De Nápoli and J. P. Pinasco, Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals, J. Math. Anal. Appl. 343 (2008), no. 1, 573–584. 10.1016/j.jmaa.2008.01.070Search in Google Scholar

[4] P. Amster, P. De Nápoli and J. P. Pinasco, Detailed asymptotic of eigenvalues on time scales, J. Difference Equ. Appl. 15 (2009), no. 3, 225–231. 10.1080/10236190802040976Search in Google Scholar

[5] F. V. Atkinson, Discrete and Continuous Boundary Problems, Math. Sci. Eng. 8, Academic Press, New York, 1964. Search in Google Scholar

[6] M. Bohner and A. Peterson, Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser, Boston, 2001. 10.1007/978-1-4612-0201-1Search in Google Scholar

[7] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. 10.1007/978-0-8176-8230-9Search in Google Scholar

[8] F. A. Davidson and B. P. Rynne, Global bifurcation on time scales, J. Math. Anal. Appl. 267 (2002), no. 1, 345–360. 10.1006/jmaa.2001.7780Search in Google Scholar

[9] F. A. Davidson and B. P. Rynne, Eigenfunction expansions in L2 spaces for boundary value problems on time-scales, J. Math. Anal. Appl. 335 (2007), no. 2, 1038–1051. 10.1016/j.jmaa.2007.01.100Search in Google Scholar

[10] F. A. Davidson and B. P. Rynne, Self-adjoint boundary-value problems on time-scales, Electron. J. Differential Equations 2007 (2007), Paper No. 175. Search in Google Scholar

[11] L. Erbe and S. Hilger, Sturmian theory on measure chains, Differ. Equ. Dyn. Syst. 1 (1993), no. 3, 223–244. Search in Google Scholar

[12] L. Erbe and A. Peterson, Eigenvalue conditions and positive solutions, J. Difference Equ. Appl. 6 (2000), no. 2, 165–191. 10.1080/10236190008808220Search in Google Scholar

[13] G. Freiling and V. Yurko, Inverse Sturm–Liouville Problems and Their Applications, Nova Science Publishers, Huntington, 2001. Search in Google Scholar

[14] G. S. Guseinov, Eigenfunction expansions for a Sturm–Liouville problem on time scales, Int. J. Difference Equ. 2 (2007), no. 1, 93–104. Search in Google Scholar

[15] G. S. Guseinov, An expansion theorem for a Sturm–Liouville operator on semi-unbounded time scales, Adv. Dyn. Syst. Appl. 3 (2008), no. 1, 147–160. Search in Google Scholar

[16] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1–2, 18–56. 10.1007/BF03323153Search in Google Scholar

[17] A. Huseynov, Limit point and limit circle cases for dynamic equations on time scales, Hacet. J. Math. Stat. 39 (2010), no. 3, 379–392. Search in Google Scholar

[18] A. Huseynov and E. Bairamov, On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dyn. Syst. Theory 9 (2009), no. 1, 77–88. Search in Google Scholar

[19] Q. Kong, Sturm–Liouville problems on time scales with separated boundary conditions, Results Math. 52 (2008), no. 1–2, 111–121. 10.1007/s00025-007-0277-xSearch in Google Scholar

[20] B. P. Rynne, L2 spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328 (2007), no. 2, 1217–1236. 10.1016/j.jmaa.2006.06.008Search in Google Scholar

[21] R. Šimon Hilscher and P. Zemánek, Weyl–Titchmarsh theory for time scale symplectic systems on half line, Abstr. Appl. Anal. 2011 (2011), Article ID 738520. 10.1155/2011/738520Search in Google Scholar

[22] S. Sun, M. Bohner and S. Chen, Weyl–Titchmarsh theory for Hamiltonian dynamic systems, Abstr. Appl. Anal. 2010 (2010), Article ID 514760. 10.1155/2010/514760Search in Google Scholar

[23] V. A. Yurko, On Ambarzumyan-type theorems, Appl. Math. Lett. 26 (2013), no. 4, 506–509. 10.1016/j.aml.2012.12.006Search in Google Scholar

Received: 2017-12-26
Accepted: 2018-02-02
Published Online: 2018-03-21
Published in Print: 2018-10-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jiip-2017-0124/html
Scroll to top button