Startseite Mathematik Uniqueness of roots up to conjugacy in circular and hosohedral-type Garside groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Uniqueness of roots up to conjugacy in circular and hosohedral-type Garside groups

  • Owen Garnier ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. März 2024

Abstract

We consider a particular class of Garside groups, which we call circular groups. We mainly prove that roots are unique up to conjugacy in circular groups. This allows us to completely classify these groups up to isomorphism. As a consequence, we obtain the uniqueness of roots up to conjugacy in complex braid groups of rank 2. We also consider a generalization of circular groups, called hosohedral-type groups. These groups are defined using circular groups, and a procedure called the Δ-product, which we study in generality. We also study the uniqueness of roots up to conjugacy in hosohedral-type groups.

Acknowledgements

This work is part of my PhD thesis, done under the supervision of Pr. Ivan Marin. I thank him for his precious advice, especially in Sections 2.3.1 and 2.3.2. I would also like to thank Mireille Soergel and Igor Haladjian for stimulating discussions.

  1. Communicated by: Olivier Dudas

References

[1] E. Bannai, Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension 2, J. Math. Soc. Japan 28 (1976), no. 3, 447–454. 10.2969/jmsj/02830447Suche in Google Scholar

[2] J. S. Birman, V. Gebhardt and J. González-Meneses, Conjugacy in Garside groups. I. Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (2007), no. 3, 221–279. 10.4171/ggd/12Suche in Google Scholar

[3] M. Broué, G. Malle and R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190. 10.1515/crll.1998.064Suche in Google Scholar

[4] F. Callegaro and I. Marin, Homology computations for complex braid groups, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 103–164. 10.4171/jems/429Suche in Google Scholar

[5] P. Dehornoy, F. Digne, E. Godelle, D. Krammer and J. Michel, Foundations of Garside Theory, EMS Tracts Math. 22, European Mathematical Society, Zürich, 2015. 10.4171/139Suche in Google Scholar

[6] P. Dehornoy and Y. Lafont, Homology of Gaussian groups, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 2, 489–540. 10.5802/aif.1951Suche in Google Scholar

[7] P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. Lond. Math. Soc. (3) 79 (1999), no. 3, 569–604. 10.1112/S0024611599012071Suche in Google Scholar

[8] N. Franco and J. González-Meneses, Computation of centralizers in braid groups and Garside groups, Rev. Mat. Iberoam. 19 (2003), 367–384. 10.4171/rmi/352Suche in Google Scholar

[9] J. González-Meneses, The 𝑛th root of a braid is unique up to conjugacy, Algebr. Geom. Topol. 3 (2003), 1103–1118. 10.2140/agt.2003.3.1103Suche in Google Scholar

[10] E.-K. Lee and S.-J. Lee, Uniqueness of roots up to conjugacy for some affine and finite type Artin groups, Math. Z. 265 (2010), no. 3, 571–587. 10.1007/s00209-009-0530-ySuche in Google Scholar

[11] G. I. Lehrer and D. E. Taylor, Unitary Reflection Groups, Austral. Math. Soc. Lect. Ser. 20, Cambridge University, Cambridge, 2009. Suche in Google Scholar

[12] M. Picantin, Petits groupes gaussiens, PhD thesis, Université de Caen, 2000. Suche in Google Scholar

[13] M. Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1 (1994), no. 5, 565–577. 10.4310/MRL.1994.v1.n5.a5Suche in Google Scholar

[14] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. 10.4153/CJM-1954-028-3Suche in Google Scholar

[15] M. Soergel, Systolic complexes and group presentations, Groups Geom. Dyn. 17 (2023), no. 3, 899–921. 10.4171/ggd/717Suche in Google Scholar

Received: 2023-11-26
Revised: 2024-02-10
Published Online: 2024-03-09
Published in Print: 2024-09-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0268/html?lang=de
Button zum nach oben scrollen