Startseite Hall classes in linear groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hall classes in linear groups

  • Francesco de Giovanni EMAIL logo , Marco Trombetti ORCID logo und Bertram A. F. Wehrfritz
Veröffentlicht/Copyright: 21. September 2023

Abstract

A well-known theorem of Philip Hall states that if a group 𝐺 has a nilpotent normal subgroup 𝑁 such that G/N is nilpotent, then 𝐺 itself is nilpotent. We say that a group class 𝔛 is a Hall class if it contains every group 𝐺 admitting a nilpotent normal subgroup 𝑁 such that G/N belongs to 𝔛. Examples have been given in [F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Hall classes of groups, to appear] to show that finite-by-𝔛 groups do not form a Hall class for many natural choices of the Hall class 𝔛. Although these examples are often linear, our aim here is to prove that the situation is much better within certain natural subclasses of the universe of linear groups.

Acknowledgements

The first two authors are supported by GNSAGA (INdAM) and are members of AGTA – Advances in Group Theory and Applications (www.advgrouptheory.com).

  1. Communicated by: Evgenii I. Khukhro

References

[1] F. de Giovanni and M. Trombetti, Infinite minimal non-hypercyclic groups, J. Algebra Appl. 14 (2015), no. 10, Article ID 1550143. 10.1142/S0219498815501431Suche in Google Scholar

[2] F. de Giovanni, M. Trombetti and B. A. F. Wehrfritz, The upper and lower central series in linear groups, Q. J. Math. 73 (2022), no. 1, 261–275. 10.1093/qmath/haab030Suche in Google Scholar

[3] F. de Giovanni, M. Trombetti and B. A. F. Wehrfritz, Subnormality in linear groups, J. Pure Appl. Algebra 227 (2023), no. 2, Paper No. 107185. 10.1016/j.jpaa.2022.107185Suche in Google Scholar

[4] F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Hall classes of groups, to appear. Suche in Google Scholar

[5] F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Hall classes of groups with a locally finite obstruction, J. Aust. Math. Soc., to appear. Suche in Google Scholar

[6] F. de Giovanni, M. Trombetti and B. A. F. Wehfritz, Zariski properties of linear groups, to appear. Suche in Google Scholar

[7] S. Franciosi and F. de Giovanni, Groups with many supersoluble subgroups, Ric. Mat. 40 (1991), no. 2, 321–333. Suche in Google Scholar

[8] N. Halbritter, Groups with a nilpotent-by-finite triple factorization, Arch. Math. (Basel) 51 (1988), no. 5, 393–400. 10.1007/BF01198622Suche in Google Scholar

[9] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787–801. 10.1215/ijm/1255448649Suche in Google Scholar

[10] J. C. Lennox and D. J. S. Robinson, The Theory of Infinite Soluble Groups, Oxford Math. Monogr., The Clarendon, Oxford, 2004. 10.1093/acprof:oso/9780198507284.001.0001Suche in Google Scholar

[11] A. Y. Ol’shanskiĭ, Geometry of Defining Relations in Groups, Kluwer, Dordrecht, 1989. Suche in Google Scholar

[12] B. I. Plotkin, Some properties of automorphisms of nilpotent groups, Soviet Math. Dokl. 2 (1961), 471–474. Suche in Google Scholar

[13] D. J. S. Robinson, A property of the lower central series of a group, Math. Z. 107 (1968), 225–231. 10.1007/BF01110261Suche in Google Scholar

[14] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Part 1 and Part 2, Ergeb. Math. Grenzgeb. (3) 62 and 63, Springer, New York, 1972. 10.1007/978-3-662-11747-7_1Suche in Google Scholar

[15] B. A. F. Wehrfritz, Supersoluble and locally supersoluble linear groups, J. Algebra 17 (1971), 41–58. 10.1016/0021-8693(71)90041-XSuche in Google Scholar

[16] B. A. F. Wehrfritz, Infinite Linear Groups, Queen Mary College, London, 1973. 10.1007/978-3-642-87081-1Suche in Google Scholar

[17] B. A. F. Wehrfritz, Hypercentral unipotent subgroups of linear groups, Bull. Lond. Math. Soc. 10 (1978), no. 3, 310–313. 10.1112/blms/10.3.310Suche in Google Scholar

[18] B. A. F. Wehrfritz, Group and Ring Theoretic Properties of Polycyclic Groups, Algebr. Appl. 10, Springer, London, 2009. 10.1007/978-1-84882-941-1Suche in Google Scholar

[19] B. A. F. Wehrfritz, On groups of finite rank, Publ. Mat. 65 (2021), no. 2, 599–613. 10.5565/PUBLMAT6522106Suche in Google Scholar

[20] B. A. F. Wehrfritz, Rank–Engel conditions on linear groups, Rend. Circ. Mat. Palermo (2) 70 (2021), no. 1, 45–56. 10.1007/s12215-020-00485-7Suche in Google Scholar

Received: 2023-04-25
Revised: 2023-08-17
Published Online: 2023-09-21
Published in Print: 2024-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0063/html?lang=de
Button zum nach oben scrollen