Home Narrow normal subgroups of Coxeter groups and of automorphism groups of Coxeter groups
Article
Licensed
Unlicensed Requires Authentication

Narrow normal subgroups of Coxeter groups and of automorphism groups of Coxeter groups

  • Luis Paris and Olga Varghese EMAIL logo
Published/Copyright: October 19, 2023

Abstract

By definition, a group is called narrow if it does not contain a copy of a non-abelian free group. We describe the structure of finite and narrow normal subgroups in Coxeter groups and their automorphism groups.

Award Identifier / Grant number: ANR-19-CE40-0001-01

Award Identifier / Grant number: VA 1397/2-2

Funding statement: The first author is supported by the French project “AlMaRe” (ANR-19-CE40-0001-01) of the ANR. The second author is supported by DFG grant VA 1397/2-2.

Acknowledgements

We want to thank Philip Möller for useful comments on the previous version of this paper and the referee for many helpful remarks.

  1. Communicated by: Adrian Ioana

References

[1] G. Baumslag, Automorphism groups of residually finite groups, J. Lond. Math. Soc. 38 (1963), 117–118. 10.1112/jlms/s1-38.1.117Search in Google Scholar

[2] M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out(Fn). I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151 (2000), no. 2, 517–623. 10.2307/121043Search in Google Scholar

[3] M. Bestvina, M. Feighn and M. Handel, The Tits alternative for Out(Fn). II. A Kolchin type theorem, Ann. of Math. (2) 161 (2005), no. 1, 1–59. 10.4007/annals.2005.161.1Search in Google Scholar

[4] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Act. Sci. Indust. 1337, Hermann, Paris, 1968. Search in Google Scholar

[5] M. W. Davis, The Geometry and Topology of Coxeter Groups, London Math. Soc. Monogr. Ser. 32, Princeton University, Princeton, 2008. Search in Google Scholar

[6] R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587–594. 10.1215/S0012-7094-61-02859-9Search in Google Scholar

[7] W. N. Franzsen and R. B. Howlett, Automorphisms of nearly finite Coxeter groups, Adv. Geom. 3 (2003), no. 3, 301–338. 10.1515/advg.2003.018Search in Google Scholar

[8] M. Gromov, Hyperbolic groups, Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York (1987), 75–263. 10.1007/978-1-4613-9586-7_3Search in Google Scholar

[9] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge University, Cambridge, 1990. 10.1017/CBO9780511623646Search in Google Scholar

[10] N. V. Ivanov, Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR 275 (1984), no. 4, 786–789. Search in Google Scholar

[11] D. Keppeler, P. Möller and O. Varghese, Automatic continuity for groups whose torsion subgroups are small, J. Group Theory 25 (2022), no. 6, 1017–1043. 10.1515/jgth-2021-0105Search in Google Scholar

[12] D. Krammer, The conjugacy problem for Coxeter groups, Groups Geom. Dyn. 3 (2009), no. 1, 71–171. 10.4171/ggd/52Search in Google Scholar

[13] A. Lubotzky, Normal automorphisms of free groups, J. Algebra 63 (1980), no. 2, 494–498. 10.1016/0021-8693(80)90086-1Search in Google Scholar

[14] G. Maxwell, The normal subgroups of finite and affine Coxeter groups, Proc. Lond. Math. Soc. (3) 76 (1998), no. 2, 359–382. 10.1112/S0024611598000112Search in Google Scholar

[15] J. McCarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), no. 2, 583–612. 10.1090/S0002-9947-1985-0800253-8Search in Google Scholar

[16] P. Möller and O. Varghese, Normal subgroups in automorphism groups, preprint (2022), https://arxiv.org/abs/2208.05677. Search in Google Scholar

[17] G. A. Noskov and E. B. Vinberg, Strong Tits alternative for subgroups of Coxeter groups, J. Lie Theory 12 (2002), no. 1, 259–264. Search in Google Scholar

[18] D. Osajda and P. Przytycki, Tits alternative for groups acting properly on 2-dimensional recurrent complexes, Adv. Math. 391 (2021), Paper No. 107976. 10.1016/j.aim.2021.107976Search in Google Scholar

[19] L. Paris, Irreducible Coxeter groups, Internat. J. Algebra Comput. 17 (2007), no. 3, 427–447. 10.1142/S0218196707003779Search in Google Scholar

[20] V. P. Platonov, A certain problem for finitely generated groups, Dokl. Akad. Nauk BSSR 12 (1968), 492–494. Search in Google Scholar

[21] D. Qi, A note on parabolic subgroups of a Coxeter group, Expo. Math. 25 (2007), no. 1, 77–81. 10.1016/j.exmath.2006.05.001Search in Google Scholar

[22] D. Qi, On irreducible, infinite, non-affine Coxeter groups, Ph.D. thesis, The Ohio State University, 2007. 10.4064/fm193-1-5Search in Google Scholar

[23] L. Ribes and P. Zalesskii, Profinite groups, 2nd ed., Ergeb. Math. Grenzgeb. (3) 40, Springer, Berlin, 2010. 10.1007/978-3-642-01642-4Search in Google Scholar

[24] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Part 1, Ergeb. Math. Grenzgeb. (3) 62, Springer, New York, 1972. 10.1007/978-3-662-07241-7_1Search in Google Scholar

[25] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. 10.1016/0021-8693(72)90058-0Search in Google Scholar

[26] J. Tits, Sur le groupe des automorphismes de certains groupes de Coxeter, J. Algebra 113 (1988), no. 2, 346–357. 10.1016/0021-8693(88)90164-0Search in Google Scholar

Received: 2022-12-01
Revised: 2023-08-10
Published Online: 2023-10-19
Published in Print: 2024-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jgth-2022-0202/html
Scroll to top button