Abstract
A skew morphism of a finite group đ´ is a permutation đ of đ´ fixing the identity element and for which there is an integer-valued function đ on đ´ such that
Funding source: Javna Agencija za Raziskovalno Dejavnost RS
Award Identifier / Grant number: N1-0062
Award Identifier / Grant number: J1-9108
Award Identifier / Grant number: J1-1695
Award Identifier / Grant number: J1-2451
Award Identifier / Grant number: N1-0208
Funding source: National Research Foundation of Korea
Award Identifier / Grant number: 2018R1D1A1B05048450
Funding statement: The second author is supported by the Slovenian Research Agency (research program P1-0285, research projects N1-0062, J1-9108, J1-1695, J1-2451 and N1-0208). The third author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B05048450).
Acknowledgements
-
Communicated by: Andrea Lucchini
References
[1] M. BachratĂ˝ and R. Jajcay, Classification of coset-preserving skew-morphisms of finite cyclic groups, Australas. J. Combin. 67 (2017), 259â280. Suche in Google Scholar
[2] M. BachratĂ˝, M. Conder and G. Verret, Skew product groups for monolithic groups, Algebr. Comb. 5 (2022), 785â802. Suche in Google Scholar
[3] N.âL. Biggs and A.âT. White, Permutation Groups and Combinatorial Structures, London Math. Soc. Lecture Note Ser. 33, Cambridge University, Cambridge, 1979. Suche in Google Scholar
[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235â265. Suche in Google Scholar
[5] J. Chen, S. Du and C.âH. Li, Skew-morphisms of nonabelian characteristically simple groups, J. Combin. Theory Ser. A 185 (2022), Paper No. 105539. Suche in Google Scholar
[6] M.âD.âE. Conder, R. Jajcay and T.âW. Tucker, Cyclic complements and skew morphisms of groups, J. Algebra 453 (2016), 68â100. Suche in Google Scholar
[7] K. Hu, The theory of skew morphisms, preprint (2012). Suche in Google Scholar
[8] R. Jajcay and R. Nedela, Half-regular Cayley maps, Graphs Combin. 31 (2015), no. 4, 1003â1018. Suche in Google Scholar
[9] R. Jajcay and J. Ĺ irĂĄĹ, Skew-morphisms of regular Cayley maps, Discrete Math. 244 (2002), 167â179. Suche in Google Scholar
[10] D.âL. Johnson, Presentations of Groups, 2nd ed., London Math. Soc. Stud. Texts 15, Cambridge University, Cambridge, 1997. Suche in Google Scholar
[11] I. KovĂĄcs and Y.âS. Kwon, Regular Cayley maps on dihedral groups with the smallest kernel, J. Algebraic Combin. 44 (2016), no. 4, 831â847. Suche in Google Scholar
[12] I. KovĂĄcs and Y.âS. Kwon, Classification of reflexible Cayley maps for dihedral groups, J. Combin. Theory Ser. B 127 (2017), 187â204. Suche in Google Scholar
[13] I. KovĂĄcs and Y.âS. Kwon, Regular Cayley maps for dihedral groups, J. Combin. Theory Ser. B 148 (2021), 84â124. Suche in Google Scholar
[14] I. KovĂĄcs, D. MaruĹĄiÄ and M. Muzychuk, On G-arc-regular dihedrants and regular dihedral maps, J. Algebraic Combin. 38 (2013), no. 2, 437â455. Suche in Google Scholar
[15] J.âH. Kwak, Y.âS. Kwon and R. Feng, A classification of regular đĄ-balanced Cayley maps on dihedral groups, European J. Combin. 27 (2006), no. 3, 382â393. Suche in Google Scholar
[16] R.âB. Richter, J. Ĺ irĂĄĹ, R. Jajcay, T.âW. Tucker and M.âE. Watkins, Cayley maps, J. Combin. Theory Ser. B 95 (2005), no. 2, 189â245. Suche in Google Scholar
[17] N.-E. Wang, K. Hu, K. Yuan and J.-Y. Zhang, Smooth skew morphisms of dihedral groups, Ars Math. Contemp. 16 (2019), no. 2, 527â547. Suche in Google Scholar
[18] Y. Wang and R.âQ. Feng, Regular balanced Cayley maps for cyclic, dihedral and generalized quaternion groups, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 773â778. Suche in Google Scholar
[19] J.-Y. Zhang, A classification of regular Cayley maps with trivial Cayley-core for dihedral groups, Discrete Math. 338 (2015), no. 7, 1216â1225. Suche in Google Scholar
[20] J.-Y. Zhang, Regular Cayley maps of skew-type 3 for dihedral groups, Discrete Math. 338 (2015), no. 7, 1163â1172. Suche in Google Scholar
[21] J.-Y. Zhang and S. Du, On the skew-morphisms of dihedral groups, J. Group Theory 19 (2016), no. 6, 993â1016. Suche in Google Scholar
Š 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Fusion systems realizing certain Todd modules
- Diagonal embeddings of finite alternating groups
- Vertex-transitive graphs with local action the symmetric group on ordered pairs
- On the Schur multiplier of finite đ-groups of maximal class
- A classification of skew morphisms of dihedral groups
- On closed subgroups of precompact groups
- Inertia of retracts in Demushkin groups
- On arithmetic properties of solvable BaumslagâSolitar groups
Artikel in diesem Heft
- Frontmatter
- Fusion systems realizing certain Todd modules
- Diagonal embeddings of finite alternating groups
- Vertex-transitive graphs with local action the symmetric group on ordered pairs
- On the Schur multiplier of finite đ-groups of maximal class
- A classification of skew morphisms of dihedral groups
- On closed subgroups of precompact groups
- Inertia of retracts in Demushkin groups
- On arithmetic properties of solvable BaumslagâSolitar groups