Startseite On the Schur multiplier of finite 𝑝-groups of maximal class
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Schur multiplier of finite 𝑝-groups of maximal class

  • Renu Joshi und Siddhartha Sarkar EMAIL logo
Veröffentlicht/Copyright: 25. Oktober 2022

Abstract

In this article, we prove that the Schur multiplier of a finite 𝑝-group of maximal class of order p n ( 4 ≤ n ≤ p + 1 ) is elementary abelian. The case n = p + 1 settles a question raised by Primož Moravec in an earlier article.

Award Identifier / Grant number: 0400422

Funding statement: The research of the author Renu Joshi is supported by PMRF, Ministry of Education, Government of India (PMRF ID – 0400422).

Acknowledgements

The authors would like to thank Professor Bettina Eick and Professor Michael Vaughan-Lee for many helpful comments and encouragement.

  1. Communicated by: Christopher W. Parker

References

[1] R. D. Blyth and R. F. Morse, Computing the nonabelian tensor squares of polycyclic groups, J. Algebra 321 (2009), no. 8, 2139–2148. 10.1016/j.jalgebra.2008.12.029Suche in Google Scholar

[2] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311–335. 10.1016/0040-9383(87)90004-8Suche in Google Scholar

[3] B. Eick, Schur multiplicators of finite 𝑝-groups with fixed coclass, Israel J. Math. 166 (2008), 157–166. 10.1007/s11856-008-1025-ySuche in Google Scholar

[4] B. Eick, Computing 𝑝-groups with trivial Schur multiplicator, J. Algebra 322 (2009), no. 3, 741–751. 10.1016/j.jalgebra.2009.03.031Suche in Google Scholar

[5] G. Ellis, HAP–a GAP package, Version 1.29, Release date 07.01.2021, 2021. Suche in Google Scholar

[6] S. Hatui, V. Kakkar and M. K. Yadav, The Schur multiplier of groups of order p 5 , J. Group Theory 22 (2019), no. 4, 647–687. 10.1515/jgth-2018-0139Suche in Google Scholar

[7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monogr. (N. S.) 2, The Clarendon, New York, 1987. Suche in Google Scholar

[8] C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, London Math. Soc. Monogr. (N. S.) 27, Oxford University, Oxford, 2002. 10.1093/oso/9780198535485.001.0001Suche in Google Scholar

[9] P. Moravec, On the Schur multipliers of finite 𝑝-groups of given coclass, Israel J. Math. 185 (2011), 189–205. 10.1007/s11856-011-0106-5Suche in Google Scholar

[10] N. R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. (N. S.) 22 (1991), no. 1, 63–79. 10.1007/BF01244898Suche in Google Scholar

[11] J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20–50. 10.1515/crll.1904.127.20Suche in Google Scholar

[12] The GAP Group, GAP – Groups, algorithms, and programming, Version 4.11.1, 2021. Suche in Google Scholar

Received: 2022-02-24
Revised: 2022-08-30
Published Online: 2022-10-25
Published in Print: 2023-05-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2022-0039/html
Button zum nach oben scrollen