Abstract
We will present an alternative approach to Zalesskiĭ’s theorem on diagonal embeddings of finite alternating groups.
-
Communicated by: Michael Giudici
References
[1] P. J. Cameron, Permutation Groups, London Math. Soc. Stud. Texts 45, Cambridge University, Cambridge, 1999. Suche in Google Scholar
[2] J. D. Dixon and B. Mortimer, Permutation Groups, Grad. Texts in Math. 163, Springer, New York, 1996. 10.1007/978-1-4612-0731-3Suche in Google Scholar
[3] M. W. Liebeck and J. Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, Proc. Lond. Math. Soc. (3) 63 (1991), 266–314. 10.1112/plms/s3-63.2.266Suche in Google Scholar
[4] A. E. Zalesskiĭ, Group rings of inductive limits of alternating groups, Leningrad Math. J. 2 (1991), 1287–1303. Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Fusion systems realizing certain Todd modules
- Diagonal embeddings of finite alternating groups
- Vertex-transitive graphs with local action the symmetric group on ordered pairs
- On the Schur multiplier of finite 𝑝-groups of maximal class
- A classification of skew morphisms of dihedral groups
- On closed subgroups of precompact groups
- Inertia of retracts in Demushkin groups
- On arithmetic properties of solvable Baumslag–Solitar groups
Artikel in diesem Heft
- Frontmatter
- Fusion systems realizing certain Todd modules
- Diagonal embeddings of finite alternating groups
- Vertex-transitive graphs with local action the symmetric group on ordered pairs
- On the Schur multiplier of finite 𝑝-groups of maximal class
- A classification of skew morphisms of dihedral groups
- On closed subgroups of precompact groups
- Inertia of retracts in Demushkin groups
- On arithmetic properties of solvable Baumslag–Solitar groups