Startseite Income Distribution, Factor Endowments, and Trade Revisited: The Role of Non-Tradable Goods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Income Distribution, Factor Endowments, and Trade Revisited: The Role of Non-Tradable Goods

  • Sebastian Galiani , Daniel Heymann EMAIL logo und Nicolas E. Magud
Veröffentlicht/Copyright: 14. Juli 2017

Abstract

We return to the traditional theme of the distributive consequences of international prices and trade policies, focusing on economies relatively abundant in natural resources with a large non-tradable-goods sector. Changes in international prices create an aggregate demand effect which impacts on the earnings of factors employed in the non-traded goods sector. We show that, in economies highly specialized in the production of tradable goods and where the import-competing sector is small, under standard assumptions, terms-of- trade shifts have a neutral effect on factor prices and thus lack distributive effects, quite differently from Stolper-Samuelson scenarios. In economies with sizable import-competing sectors and two “urban” productive factors (e.g. skilled and unskilled labor), changes in the terms of trade do induce distributional tensions through two channels: (i) the exogenous shift in the relative price of tradable goods, and (ii) the endogenous displacement of the demand for non-tradables. We illustrate how, according to the structure of the economy, different patterns of income distribution may arise. Next, we analyze the introduction of trade duties. Trade taxes change relative prices between tradable goods as a terms-of-trade shock does, but also introduce an additional demand mechanism, that depends on the use the government gives to the revenues. If the tax revenues are transferred back to the private sector, the resulting reallocation of spending favors those factors used intensively in the production of non-tradables.

JEL Classification: F16; F13; D33

Acknowledgment

We would like to thank Daniel Aromi, Sebastian Bauer, Joaquin Endara, Martin Guzman, Pablo Mira, Gustavo Montero, Santiago Cesteros, Guido Zack, and an anonymous referee for their comments and suggestions. The usual caveat applies.

A Appendix

Imports as Production Inputs in the Two-Sector Case

Good M is now not only a consumer product but is also used as an input in the production of goods A and N. The proportional change in intermediate imports after a change in the price of A (with p^M=0):

M^=λMA(p^A+y^A)+λMN(p^N+y^N)p^M

The supply-demand conditions for primary factors L, T and H are still given by:

L^=0=λLA(p^A+y^A)+λLN(p^N+y^N)w^T^=0=p^A+y^At^H^=0=λHN(p^N+y^N)h^

The trade balance condition:

p^A+y^A=(1m)γA(p^A+c^A)+(1m)γMc^M+mM^

Cost-price equations:

p^A=θTAt^+θLAw^+θMAp^Mp^N=θLNw^+θHNh^+θMNp^M

It can be seen that these equations are satisfied if:

t^=w^=h^=p^A+y^A=p^N+y^N=c^M=p^A+c^A=M^=11θMAp^A

and:

p^N=1θMH1θMAp^A,y^N=θMH1θMAp^A,y^A=θMA1θMAp^A

The change in the price of the exportable good has, as in the case in which there are no intermediate imports, neutral effects on the returns to the domestic factors. However, now factor earnings rise more than in proportion to the price of good A because of the expanded production opportunities created by the relative reduction in the cost of international inputs.

B Appendix

Derivation of the Reduced System involving the Sign of the Determinant in the Three-Goods Case

The supply-demand equations for production factors can be written as follows:

L^=0=λLA(p^A+y^A)+λLN(p^N+y^N)+λLMy^Mw^T^=0=p^A+y^At^H^=0=λHN(p^N+y^N)+λHMy^Mh^

Price equations for A and M:

p^A=θTAt^+θLAw^p^M=0=θLMw^+θHMh^

Trade balance:

χA(p^A+y^A)+χMy^M=γA(p^A+c^A)+γMc^M

Taking into account the assumed consumption demand functions and the supply-demand balance of non-tradable-goods:

p^N+y^N=p^N+c^N=p^A+c^A=c^M

The system then reduces to:

λLAt^+λLNc^M+λLMy^M=p^AθTAt^θLAλHNc^M+λHMy^M=θLMθHMp^AθTAt^θLAχAt^+χMy^M=c^M

or:

(λLAθLA+θTA)t^+θLAλLNc^M+θLAλLMy^M=p^AθLMθTAt^+θHMθLAλHNc^M+θHMθLAλHMy^M=θLMp^AχAt^+χMy^M=c^M

leading to:

((λLA+λLNχA)θLA+θTA)t^+θLA(λLM+λLNχM)y^M=p^A(θHMθLAλHNχAθLMθTA)t^+θHMθLA(λHM+λHNχM)=θLMp^A

The determinant of this system is:

Ω=((λLA+λLNχA)θLA+θTA)(λHM+λHNχM)θHMθLA(θHMθLAλHNχAθLMθTA)(λLM+λLNχM)θLA

It can be seen that the only negative term is a multiple of θHMθLAλHNχA. Collecting the terms in λHN:

(λLA+λLNχA)θLAλHNθHMθLAχM+λHNθHMθLAθTAχM(λLM+λLNχM)θHMθLAλHNθLAχA=θHMθLAλHN(θLA((λLA+λLNχA)χM(λLM+λLNχM)χA)+θTAχM)

This reduces to:

θHMθLAλHN((θLAλLA+θTA)χMλLMθLAχA)

But:

χM=pMyMpMyM+pAyA=pMyMwLMwLMwLpMyMwLMwLMwL+pAyAwLAwLAwL=λLMθLAλLMθLA+λLAθLM=λLMθLAx

And a similar expression for χA.

Then:

(θLAλLA+θTA)χMλLMθLAχA=λLMθLAx(θLAλLA+θTAλLAθLM)=λLMθLAx(θTA(1λLA)+λLAθHM)>0

Therefore, Ω is unambiguously positive.

C Appendix

Proof of Proposition 4 and Related Results

Proof that t^p^A>0 and y^Mp^A0

Using the reduced system shown in Appendix B, it follows that:

Ωt^p^A=θHMθLA(λHM+λHNχM)+θLMθLA(λLM+λLNχM)>0Ωy^Mp^A=θLM((λLA+λLNχA)θLA+θTA)(θHMθLAλHNχAθLMθTA)=θLM(λLA+λLNχA)θLAθHMθLAλHNχA<0

Proof that t^p^A1

This result is equivalent to p^A+y^Ap^A or y^A0. The system can be rearranged as:

((λLA+λLNχA)θLA+θTA)y^A+θLA(λLM+λLNχM)y^M=p^A(1(λLA+λLNχA)θLA+θTA)(θHMθLAλHNχAθLMθTA)y^A+θHMθLA(λHM+λHNχM)y^M=p^A(θLM+(θHMθLAλHNχAθLMθTA))

which implies:

Ωy^Ap^A=(1((λLA+λLNχA)θLA+θTA))θHMθLA(λHM+λHNχM)+θLA(λLM+λLNχM)(θHMθLAλHNχA+θLMθLA)>0

because (λLA+λLNχA)θLA+θTA < 1

Expression for w^

The system can be rearranged (taking into account that t^=p^AθLAw^θTA) to give:

((λLA+λLNχA)θLA+θTA)w^θTA(λLM+λLNχM)y^M=p^A(λLA+λLNχA)(θHMθLAλHNχAθLMθTA)w^+θHMθTA(λHM+λHNχM)=p^AλHNθHMχA

In a similar fashion to what was done before, it can be shown that the determinant of this system is positive:

Ω=((λLA+λLNχA)θLA+θTA)θHMθTA(λHM+λHNχM)θTA(λLM+λLNχM)(θHMθLAλHNχAθLMθTA)>0

Then:

Ωw^p^A=(λLA+λLNχA)θHMθTA(λHM+λHNχM)λHNθHMχAθTA(λLM+λLNχM)

Which can be reduced to an expression with an ambiguous sign:

Ωw^p^A=θHMθTA(λLA(λHM+λHNχM)+χA(λHMλLNλHNλLM))

Limit cases

1. Sector A labor intensive: θLA ≈ 1

In the limit: w^=p^A,h^=θLMθHMp^A

The value of spending on good N (in terms of M) and the volume consumption of M may increase or fall depending on the parameters. To clarify this, it is useful to rewrite the system as:

(λLA+λLNχA)c^M+(χAλLMχMλLA)y^M=χAp^AθHMλHNc^M+θHMλHMy^M=θLMp^A

The determinant Ω″ can be shown to be positive. Now:

Ωc^Mp^A=θHMλHMχA+θLM(χAλLMχMλLA)

Recalling the expressions for χA, χM:

Ωc^Mp^A=θLMλLAx(θHMλHM+λLM(θLMθLA))=θLMλLAxθHM(λHMλLM)

So that the sign of c^M depends on that of the difference in factor uses in sector: λHMλLM.

2. Sector A, with very low labor intensity: θLA ≈ 0, λLA ≈ 0

Now, t^p^A=1,y^A=0

The system can be written:

w^(λLM+λLNχM)y^M=λLNχAp^AθLMw^+θHM(λHM+λHNχM)y^M=θHMλHNχAp^A

The determinant Ω´´´ is positive. Now,

Ωw^p^A=θHMχA(λLN(λHM+λHNχM)λHN(λLM+λLNχM))

Or:

Ωw^p^A=θHMχA(λLNλHMλHNλLM)=θHMχA(λLNλHN)

Then, w^p^A>0 if sector N is comparatively L-intensive. However, w^p^A<1 whatever the value of λLNλHN.

It can also be shown that:

Ωp^Np^A=θLNΩw^p^A+θHNΩh^p^A>0

That is so because:

Ωp^Np^A=χA(λLNλHN)(θLNθHMθHNθLM)=χA(λLNλHN)(θLNθLM)>0

Also: p^Np^A<1 since, as indicated before, both w^p^A<1 and h^p^A<1.

It can also be seen that:

Ωc^Mp^A=χA(θHMλHM+θLMλLM)>0

and:

Ωc^Np^A=χA((θHMλHM+θLMλLM)(λLNλHN)(θLNθLM))=χA(λHMθHN+λLMθLN)>0

D Appendix

Effects of the tax refund in the three-goods case

Recalling equations (34) and (35), the system that determines the effect of the trade tax and refund policy can be written as:

[(λLA+λLNχA)θLA+θTA]t^+(λLM+λLNχM)θLAy^M=αλLNδα(χAγA)[λHNχAθHMθLAθLMθTA]t^+(λHM+λHNχM)θHMθLAy^M=θLMαλHNθHMθLAδα(χAγA)

Thus, the change of the endogenous variables t^,y^M is a combination of the response that would hold in the case of a terms-of-trade shift of magnitude –α, and the effect of the refund δα(χA−γA):

Ωt^tax=Ωt^int+θHMθLA(λLMλHNλLNλHM)θLAδα(χAγA)Ωy^Mtax=Ωy^Mint(θHMλHNθLA(λLAθLA+θTA)+θLMθTAλLNθLA))δα(χAγA)

where Ω is the positive determinant. Similar expressions can be found for variables like w^ and c^M

Ωw^tax=Ωw^intθHMθTA(λLMλHNλLNλHM)δα(χAγA)Ωc^Mtax=Ωc^Mint+((λLAθLA+θTA)θHMλHMθLA+θLMθTAθLAλLM)δα(χAγA)

It can also be verified that t^taxα<0:

Ωt^taxα=(λHM+λHNχM)θHMθLAθLMθLA(λLM+λLNχM)+θHMθLA(λLMλHNλLNλHM)θLAδ(χAγA)

The only positive term is proportional to θHMθLAλHN. Comparing the analogous terms and remembering the expressions for χA, χM

θHMθLAλLMλHNθLAδ(χAγA)θHMθLAλHNχM<θHMθLAλHN(χAθLAλLMχM)<0

Also: y^Mtaxα>0:

y^Mtaxα=χA(θLMθLAλLN+θHMθLAλHN)+θLM(λLAθLA+θTA)θLMθTAδ(χAγA)((λLAθLA+θTA)θHMθLAλHN+θLMθTAθLAλLN)>χA((θLMθLAλLN+θHMθLAλHN)(λLAθLA+θTA)θHMθLAλHNθLMθTAθLAλLN)>0

References

Acemoglu, D 2002. “Technical Change, Inequality and Labor Market.” Journal of Economic Literature 40: 7–72.10.1257/jel.40.1.7Suche in Google Scholar

Acemoglu, D 2003. “Patterns of Skill Premia.” Review of Economic Studies 70: 199–230.10.1111/1467-937X.00242Suche in Google Scholar

Beladi, H., and R. Batra. 2004. “Traded and Nontraded Goods and Real Wages.” Review of Development Economics 8 (1): 1–14.10.1111/j.1467-9361.2004.00216.xSuche in Google Scholar

Beladi, H., and R. Oladi. 2009. “Market Interconnection and Wages.” Economic Letters 105: 117–119.10.1016/j.econlet.2009.06.014Suche in Google Scholar

Cassing, J. 1977. “International Trade in the Presence of Pure Monopoly in the Non-Traded Goods Sector.” The Economic Journal 87 (347): 523–532.10.2307/2231557Suche in Google Scholar

Cassing, J. 1978. “Transport Costs in International Trade Theory: A Comparison with the Analysis of Nontraded Goods.” The Quarterly Journal of Economics XCII (4): 535–550.10.2307/1883174Suche in Google Scholar

Coble, D., and N. Magud. 2010. “A Note on Terms of Trade Shocks and the Wage Gap.”.IMF Working Paper, 10/279. Washington: International Monetary Fund.10.5089/9781455210862.001Suche in Google Scholar

Deardorff, A., and P. Courant. 1990. “On the Likelihood of Factor Price Equalization with Non-Traded Goods.” International Economic Review 31 (3): 589–596.10.2307/2527163Suche in Google Scholar

Diaz Alejandro, C. 1965. Exchange Rate Devaluation in a Semi-Industrialized Economy: The Experience of Argentina, 1955–1961. Cambridge: The MIT Press.Suche in Google Scholar

Ethier, W. 1972. “Nontraded Goods and the Heckscher-Ohlin Model.” International Economic Review 13 (1): 132–147.10.2307/2525910Suche in Google Scholar

Ethier, W. 1984. “Higher Dimensional Issues in Trade Theory, chapter 3.”. In Handbook of International Economics. , edited by Jones, R. W., and P. B. Kenen, (Eds.) Vol. 1. Amsterdam: North-Holland.10.1016/S1573-4404(84)01006-6Suche in Google Scholar

Galiani, S., D. Heymann, C. Dabus, and F. Tohme. 2008. “On the Emergence of Public Education in Land-Rich Economies.” Journal of Development Economics 86: 434–446.10.1016/j.jdeveco.2007.12.004Suche in Google Scholar

Galiani, S., N. Schofield, and G. Torrens. 2014. “Factor Endowments, Democracy and Trade Policy Convergence.” Journal of Public Economic Theory 16: 119–156.10.1111/jpet.12057Suche in Google Scholar

Goldberg, K., and N. Pavcnik. 2007. “Distributional effects of globalization in developing countries.” Journal of economic Literature 45: 39–82.10.1257/jel.45.1.39Suche in Google Scholar

Goldberg, K., and N. Pavcnik. 2016. “The Effects of Trade Policy.”.NBER Working Paper 21957. Cambridge: National Bureau of Economic Research.10.3386/w21957Suche in Google Scholar

Gylfason, T. 2008. “Dutch Disease.”. In The New Palgrave Dictionary of Economics. , edited by Durlauf, S., and L. Blume (Eds.) : McMillan.10.1057/978-1-349-95121-5_1978-1Suche in Google Scholar

Hermida, A., 2015. Skill Premium y Tipo de Cambio Real: El Caso de las Economías Latinoamericanas.Documento de Trabajo CEDLAS.Suche in Google Scholar

Johnson, H. G. 1957. “Factor Endowments, International Trade and Factor Prices.” Manchester School 25 (3): 270–283.10.1111/j.1467-9957.1957.tb01000.xSuche in Google Scholar

Jones, R. W. 1974. “Trade with Non-Traded Goods: The Anatomy of Interconnected Markets.” Economica 41: 121–138.10.2307/2553762Suche in Google Scholar

Komiya, R. 1967. “Non-Traded Goods and the Pure Theory of International Trade.” International Economic Review 8 (2): 132–152.10.2307/2525597Suche in Google Scholar

McDougall, I. 1970. “Non-Traded Goods and the Pure Theory of International Trade.”. In Studies in International Trade. , edited by McDougall, I., and R. N. Snape (Eds.) Amsterdam: North Holland.Suche in Google Scholar

O’Rourke, K., and A. Taylor. 2006. “Democracy and Protectionism.”.NBER Working Paper 12250. Cambridge: National Bureau of Economic Research.Suche in Google Scholar

Rodrik, D. 1999. “Where Did All the Growth Go? External Shocks, Social Conflict and Growth Collapses.” Journal of Economic Growth 4: 385–412.10.1023/A:1009863208706Suche in Google Scholar

Rogowski, R. 1989. Commerce and Coalitions: How Trade Affects Domestic Political Alignments. Princeton, New Jersey: Princeton University Press.10.1515/9780691219431Suche in Google Scholar

Salter, W. 1959. “Internal and External Balance. The Role of Price and Expenditure Effects.” Economic Record 36: 226–238.10.1111/j.1475-4932.1959.tb00462.xSuche in Google Scholar

Stiglitz, J.E. 2002. Globalization and its Discontents. Vol. 500 Norton.Suche in Google Scholar

Stolper, W., and P. A. Samuelson. 1941. “Protection and Real Wages.” Review of Economic Studies 9: 58–73.10.2307/2967638Suche in Google Scholar

Swan, T. 1960. “Economic Control in a Dependent Economy.” Economic Record 36: 51–66.10.1111/j.1475-4932.1960.tb00493.xSuche in Google Scholar

Thierfelder, K., and S. Robinson. 2002. “Trade and Tradability: Exports Imports and Factor Markets in the Stolper-Samuelson Model.”.TMD Discussion Paper No. 93.Suche in Google Scholar

Williamson, J. 2011. Trade and Poverty: When the Third World Fell Behind. Cambridge: The MIT Press.10.7551/mitpress/9780262015158.001.0001Suche in Google Scholar

Published Online: 2017-7-14

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgd-2016-0028/html
Button zum nach oben scrollen