Startseite Experimental techniques for screening of antiosteoporotic activity in postmenopausal osteoporosis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental techniques for screening of antiosteoporotic activity in postmenopausal osteoporosis

  • Swaha Satpathy EMAIL logo , Arjun Patra und Bharti Ahirwar
Veröffentlicht/Copyright: 28. Juli 2015

Abstract

Postmenopausal osteoporosis, a silent epidemic, has become a major health hazard, afflicting about 50% of postmenopausal women worldwide and is thought to be a disease with one of the highest incidences in senile people. It is a chronic, progressive condition associated with micro-architectural deterioration of bone tissue that results in low bone mass, decreased bone strength that predisposes to an increased risk of fracture. Women are more likely to develop osteoporosis than men due to reduction in estrogen during menopause which leads to decline in bone formation and increase in bone resorption activity. Estrogen is able to suppress the production of proinflammatory cytokines like interleukin (IL)-1, IL-6, IL-7 and tumor necrosis factor (TNF-α). This is why these cytokines are elevated in postmenopausal women. In this review article we have made an attempt to collate the various methods and parameters most frequently used for screening of antiosteoporotic activity in postmenopausal osteoporosis. Pertaining to ovariectomized animal model, this is the most appropriate model for studying the efficacy of different drugs to prevent bone loss in postmenopausal osteoporosis.

References

1. NelsonHD. Menopause. Lancet2008;371:76070.10.1016/S0140-6736(08)60346-3Suche in Google Scholar

2. PacificiR. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res1996;11:104351.10.1002/jbmr.5650110802Suche in Google Scholar

3. HofbauerLC, KhoslaS, DunstanCR, LaceyDL, BoyleWJ, RiggsBL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res2000;15:212.10.1359/jbmr.2000.15.1.2Suche in Google Scholar

4. TellaSH, GallagherJC. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol2014;142:15570.10.1016/j.jsbmb.2013.09.008Suche in Google Scholar

5. MerylSL. Metabolic bone diseases. In: HarrisK, SludgeR, editors, Textbook of rheumatology, 5th ed. London: Saunders, 1997:1563–72.Suche in Google Scholar

6. SambrookP, CooperC. Osteoporosis. Lancet2006;367:201018.10.1016/S0140-6736(06)68891-0Suche in Google Scholar

7. ZhangJ, MungerRG, WestNA, CutlerDR, WengreenHJ, CorcoranCD. Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol2006;163:917.10.1093/aje/kwj005Suche in Google Scholar

8. NadiaME, NazrunAS, NorazlinaM, IsaNM, NorlizaM, Ima NirwanaS. The anti-inflammatory, phytoestrogenic, and antioxidative role of Labisia pumila in prevention of postmenopausal osteoporosis. Adv Pharmacol Sci2012;2012:706905.10.1155/2012/706905Suche in Google Scholar

9. KapurP, JarryH, WuttkeW, PereiraBM, Seidlova-WuttkeD. Evaluation of the antiosteoporotic potential of Tinospora cordifolia in female rats. Maturitas2008;59:32938.10.1016/j.maturitas.2008.03.006Suche in Google Scholar

10. GenantHK, BaylinkDJ, GallagherJC. Estrogens in the prevention of osteoporosis in postmenopausal women. Am J Obstet Gynecol1989;161:18426.10.1016/S0002-9378(89)80004-3Suche in Google Scholar

11. AxelsonM, SjovallJ, GustafssonBE, SetchellKD. Soya – a dietary source of the non-steroidal oestrogen equal in man and animals. J Endocrinol1984;102:4956.10.1677/joe.0.1020049Suche in Google Scholar PubMed

12. CanalisE, McCarthyT, CentrellaM. Growth factors and the regulation of bone remodeling. J Clin Invest1988;81:27781.10.1172/JCI113318Suche in Google Scholar PubMed PubMed Central

13. ColditzGA, HankinsonSE, HunterDJ, WillettWC, MansonJE, StampferMJ, et al. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N Engl J Med1995;332:158993.10.1056/NEJM199506153322401Suche in Google Scholar

14. MurkiesAL, WilcoxG, DavisSR.Clinical review 92: phytoestrogens. J Clin Endocrinol Metab1998;83:297303.10.1210/jc.83.2.297Suche in Google Scholar

15. OcchiutoF, PasqualeRD, GuglielmoG, PalumboDR, ZanglaG, SamperiS, et al. Effects of phytoestrogenic isoflavones from red clover (Trifolium pratense L.). On experimental osteoporosis. Phytother Res2007;21:1304.10.1002/ptr.2037Suche in Google Scholar PubMed

16. BuencaminoMC, SikonAL, JainA, ThackerHL. An observational study on the adherence to treatment guidelines of osteopenia. J Women Health2009;18:87381.10.1089/jwh.2008.0897Suche in Google Scholar PubMed

17. SchmittNM, SchmittJ, DorenM. The role of physical activity in the prevention of osteoporosis in postmenopausal women – an update. Maturitas2009;63:348.10.1016/j.maturitas.2009.03.002Suche in Google Scholar PubMed

18. WronskiTJ, YenCF. The ovariectomized rat as an animal model for postmenopausal bone loss. Cell Mater1991;Suppl.1:6974.Suche in Google Scholar

19. LelovasPP, XanthosTT, ThomaSE, LyritisGP, DontasIA. The laboratory rat as an animal model for osteoporosis research. Comp Med2008;58:42430.Suche in Google Scholar

20. MillerS. Models of skeletal osteopeniain the rat. J Histotechnol1997;20:20913.10.1179/his.1997.20.3.209Suche in Google Scholar

21. BaronR, TrossR, VigneryA. Evidence of sequential remodeling in rat trabecular bone: morphology, dynamic histomorphometry, and changes during skeletal maturation. Anat Rec1984;208:13745.10.1002/ar.1092080114Suche in Google Scholar PubMed

22. FrostHM. Mathematical elements of bone remodeling. Thomas: Springfield, 1964.10.1097/00006534-196409000-00017Suche in Google Scholar

23. KaluDN, LiuCC, HardinRR, HollisBW. The aged rat model of ovarian hormone deficiency bone loss. JEndocrinol1989;124:716.10.1210/endo-124-1-7Suche in Google Scholar PubMed

24. EinhornTA. Bone strength: the bottom line. Calcif Tissue Int1992;51:3339.10.1007/BF00316875Suche in Google Scholar PubMed

25. GamSM. Bone loss and aging. In: GoldmanR, RocksteinM, editors. The physiology and pathology of human aging. New York: Academic Press, 1975:39–57.Suche in Google Scholar

26. RiisBJ, RodbroP, ChristiansenC. The role of serum concentrations of sex steroids and bone turnover in the development and occurrence of postmenopausal osteoporosis. Calcif Tissue Int1986;38:31822.10.1007/BF02555743Suche in Google Scholar

27. JeeWS, OverviewYW. Animal models of osteopenia and osteoporosis. J Musculoskeletal Neuron Interact2001;1:193207.Suche in Google Scholar

28. VogelG, VogelWH, VogelHG, DiscoveryD. Evaluation: pharmacological assays, 2nd ed. Berlin, Heidelberg: Springer Verlag, 2002.Suche in Google Scholar

29. WaynforthB. Experimental and surgical technique in the rat, 2nd ed. London: Academic Press Ltd, 1988.Suche in Google Scholar

30. ShirwaikarA, KhanS, MaliniS. Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J Ethnopharmacol2003;89:24550.10.1016/j.jep.2003.08.004Suche in Google Scholar

31. PengZ, TuukkanenJ, ZhangH, JamsaT, VaananenHK. The mechanical strength of bone in different rat models of experimental osteoporosis. Bone1994;15:52332.10.1016/8756-3282(94)90276-3Suche in Google Scholar

32. ZhaoX, WuZX, ZhangY, YanYB, HeQ, CaoPC, et al. Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats. J Ethnopharmacol2011;137:10838.10.1016/j.jep.2011.07.017Suche in Google Scholar

33. ZhangY, LiXL, LaiWP, ChenB, ChowHK, WuCF, et al. Anti-osteoporotic effect of Erythrina variegata L. in ovariectomized rats. J Ethnopharmacol2007;109:1659.10.1016/j.jep.2006.07.005Suche in Google Scholar

34. OgeyA, BayraktarF, SevinG. A comparative study of raloxifen and estrogen on bone strength and cholesterol levels in ovariectomized rats. Endocr Abstr2001;3:10.Suche in Google Scholar

35. DasAS, DasD, MukherjeeM, MukherjeeS, MitraC. Phytoestrogenic effects of black tea extract (Camellia sinensis) in an oophorectomized rat (Rattus norvegicus) model of osteoporosis. Life Sci2005;77:304957.10.1016/j.lfs.2005.02.035Suche in Google Scholar

36. ZhangY, YuL, AoM, JinW. Effect of ethanol extract of Lepidium meyenii walp. On osteoporosis in ovariectomized rat. J Ethnopharmacol2006;105:2749.10.1016/j.jep.2005.12.013Suche in Google Scholar

37. ReddyNP, LakshmanaM, UdupaUV. Antiosteoporotic activity of OST-6(Osteocare), a herbomineral preparation in calcium deficient ovariectomized rats. Phytother Res2004;18:259.10.1002/ptr.1347Suche in Google Scholar

38. OmiN, EzawaI. The effect of ovariectomy on bone metabolism in rats. Bone1995;17:163S8S.10.1016/8756-3282(95)00329-CSuche in Google Scholar

39. McLeodKM, JohnsonCS. Identifying women with low bone mass: a systematic review of screening tools. Geriatr Nurs2009;30:16473.10.1016/j.gerinurse.2008.07.003Suche in Google Scholar PubMed

40. DontasI, HalabalakiM, MoutsatsouP, MitakouS, PapoutsiZ, KhaldiL, et al. Protective effect of plant extract from Onobrychis ebenoides on ovariectomy-induced bone loss in rats. Maturitas2006;53:23442.10.1016/j.maturitas.2005.05.007Suche in Google Scholar

41. HelterbrandJD, Higgs Jr RE, IversenPW, Tysarczyk-NiemeyerG, SatoM. Application of automatic image segmentation to tibiae and vertebrae from ovariectomized rats. Bone1997;21:4019.10.1016/S8756-3282(97)00176-2Suche in Google Scholar

42. WardWE, YuanYV, CheungAM, ThompsonLU. Exposure to purified lignan from flaxseed (Linum usitatissimum) alters bone development in female rats. Br J Nutr2001;86:499505.10.1079/BJN2001429Suche in Google Scholar

43. NagyTR, ClairAL. Precision and accuracy of dual-energy X-ray absorptiometry for determining in vivo body composition of mice. Obes Res2000;8:3928.10.1038/oby.2000.47Suche in Google Scholar PubMed

44. ShuidAN, PingLL, MuhammadN, et al. The effects of Labisia pumila var. alata on bone markers and bone calcium in a rat model of post-menopausal osteoporosis. J Ethnopharmacol2011;133:53842.10.1016/j.jep.2010.10.033Suche in Google Scholar PubMed

45. WangJ, ShangF, MeiQ, WangJ, ZhangR, WangS.NO-donating genistein prodrug alleviates bone loss in ovariectomised rats. Swiss Med Wkly2008;138:6027.10.4414/smw.2008.11940Suche in Google Scholar

46. BurtisCA, AshwoodER. Tietz text book of clinical biochemisry. London: Saunders, 1986.Suche in Google Scholar

47. LeeAJ, HodgesS, EastellR. Measurement of osteocalcin. Ann Clin Biochem2000;37:43246.10.1177/000456320003700402Suche in Google Scholar PubMed

48. VarleyH. Practical biochemistry. London: William Heinemann Medical Books Ltd, 1980.Suche in Google Scholar

49. HeCC, HuiRR, TezukaY, KadotaS, LiJX. Osteoprotective effect of extract from Achyranthes bidentata in ovariectomized rats. J Ethnopharmacol2010;127:22934.10.1016/j.jep.2009.11.016Suche in Google Scholar PubMed

50. LiF, YangX, YangY, GuoC, ZhangC, YangZ, et al. Antiosteoporotic activity of echinacoside in ovariectomized rats. Phytomedicine2013;20:54957.10.1016/j.phymed.2013.01.001Suche in Google Scholar PubMed

51. YasudaH, ShimaN, NakagawaN, YamaguchiK, KinosakiM, MochizukiS, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA1998;95:3597602.10.1073/pnas.95.7.3597Suche in Google Scholar PubMed PubMed Central

52. HofbauerLC, DunstanCR, SpelsbergTC, RiggsBL, KhoslaS. Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun1998;250:77681.10.1006/bbrc.1998.9394Suche in Google Scholar PubMed

53. HofbauerLC, LaceyDL, DunstanCR, SpelsbergTC, RiggsBL, Interleukin-KS. 1Beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone1999;25:2559.10.1016/S8756-3282(99)00162-3Suche in Google Scholar

54. LinY, ZhouR, MaJ, HuangM. Effect of jiangu granule on the pituitary-adrenal gland axis of ovariectomized rats. Chin J Orthop Trauma2004;17:1921.Suche in Google Scholar

55. CaoDP, ZhengYN, QinLP, HanT, ZhangH, RahmanK, et al. Curculigo orchioides, a traditional Chinese medicinal plant, prevents bone loss in ovariectomized rats. Maturitas2008;59:37380.10.1016/j.maturitas.2008.03.010Suche in Google Scholar

56. AkessonK, LjunghallS, JonssonB, SernboI, JohnellO, GardsellP, et al. Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: a retrospective and prospective population-based study of women. J Bone Miner Res1995;10:18239.10.1002/jbmr.5650101127Suche in Google Scholar

57. DelmasPD. Clinical use of biochemical markers of bone remodeling in osteoporosis. Bone1992;13 (Suppl.1):S1721.10.1016/S8756-3282(09)80005-7Suche in Google Scholar

58. EastellR, RobinsSP, ColwellT, AssiriAM, RiggsBL, RussellRG. Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporos Int1993;3:25560.10.1007/BF01623829Suche in Google Scholar

59. ChengM, WangQ, FanY, LiuX, WangL, XieR, et al. A traditional Chinese herbal preparation, er-zhi-wan, prevent ovariectomy-induced osteoporosis in rats. J Ethnopharmacol2011;138:27985.10.1016/j.jep.2011.09.030Suche in Google Scholar

60. TeramuraK, FukushimaS, NozakiK, KokuboS, TakahashiK. Comparison of incadronate and alfacalcidol on increased bone turnover caused by ovariectomy in rats. Eur J Pharmacol2002;449:1916.10.1016/S0014-2999(02)01979-9Suche in Google Scholar

61. CalvoMS, EyreDR, GundbergCM. Molecular basis and clinical application of biological markers of bone turnover. Endocrinol Rev1996;17:33368.10.1210/er.17.4.333Suche in Google Scholar

62. GarneroP, DelmasPD. Biochemical markers of bone turnover. Applications for osteoporosis. Endocrinol Metab Clin North Am1998;27:30323.10.1016/S0889-8529(05)70007-4Suche in Google Scholar

63. RosenHN, MosesAC, GarberJ, IloputaifeID, RossDS, LeeSL, et al. A new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif Tissue Int2000;66:1003.10.1007/PL00005830Suche in Google Scholar PubMed

64. GarneroP, Sornay-RenduE, ChapuyMC, DelmasPD.Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res1996;11:33749.10.1002/jbmr.5650110307Suche in Google Scholar PubMed

65. Melton 3rd LJ, KhoslaS, AtkinsonEJ, O’FallonWM, RiggsBL. Relationship of bone turnover to bone density and fractures. J Bone Miner Res1997;12:108391.10.1359/jbmr.1997.12.7.1083Suche in Google Scholar

66. VictorWR. Enzymes: general properties. In: RobertK, DarylK, PeterA, WRV, editors. Harper’s biochemistry, 23rd ed. New Jersey: Prentice-Hall International Inc., New Jersey, 1993;516.Suche in Google Scholar

67. YogeshHS, ChandrashekharVM, KattiHR, GanapatyS, RaghavendraHL, GowdaGK, et al. Anti-osteoporotic activity of aqueous-methanol extract of Berberis aristata in ovariectomized rats. J Ethnopharmacol2011;134:3348.10.1016/j.jep.2010.12.013Suche in Google Scholar

68. Mori-OkamotoJ, Otawara-HamamotoY, YamatoH, YoshimuraH. Pomegranate extract improves a depressive state and bone properties in menopausal syndrome model ovariectomized mice. J Ethnopharmacol2004;92:93101.10.1016/j.jep.2004.02.006Suche in Google Scholar

69. KlotzDM, HewittSC, CianaP, RaviscioniM, LindzeyJK, FoleyJ, et al. Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk. J Biol Chem2002;277:85317.10.1074/jbc.M109592200Suche in Google Scholar

70. TekmalRR, LiuYG, NairHB, JonesJ, PerlaRP, LubahnDB, et al. Estrogen receptor alpha is required for mammary development and the induction of mammary hyperplasia and epigenetic alterations in the aromatase transgenic mice. J Steroid Biochem Mol Biol2005;95:915.10.1016/j.jsbmb.2005.04.007Suche in Google Scholar

71. RussoIH, RussoJ. Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst1978;61:143949.Suche in Google Scholar

72. RudzkiE, RapiejkoP, RebandelP. Occupational contact dermatitis, with asthma and rhinitis, from camomile in a cosmetician also with contact urticaria from both camomile and lime flowers. Contact Derm2003;49:162.10.1111/j.0105-1873.2003.0185e.xSuche in Google Scholar

73. MuellerSO, KorachKS. Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice. Curr Opin Pharmacol2001;1:61319.10.1016/S1471-4892(01)00105-9Suche in Google Scholar

74. AhmadNS, KhalidBA, LukeDA, Ima NirwanaS. Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin Exp Pharmacol Physiol2005;32:76170.10.1111/j.1440-1681.2005.04264.xSuche in Google Scholar PubMed

75. BasuS, MichaelssonK, OlofssonH, JohanssonS, MelhusH. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun2001;288:2759.10.1006/bbrc.2001.5747Suche in Google Scholar PubMed

76. MaggioD, BarabaniM, PierandreiM, PolidoriMC, CataniM, MecocciP, et al. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab2003;88:15237.10.1210/jc.2002-021496Suche in Google Scholar PubMed

77. SackMN, RaderDJ, Cannon 3rd RO. Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet1994;343:26970.10.1016/S0140-6736(94)91117-7Suche in Google Scholar

78. BadeauM, AdlercreutzH, KaihovaaraP, TikkanenMJ. Estrogen A-ring structure and antioxidative effect on lipoproteins. J Steroid Biochem Mol Biol2005;96:2718.10.1016/j.jsbmb.2005.04.034Suche in Google Scholar

79. LeanJM, JaggerCJ, KirsteinB, FullerK, ChambersTJ. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology2005;146:72835.10.1210/en.2004-1021Suche in Google Scholar

80. NorazlinaM, Ima-NirwanaS, GaporMT, KhalidBA. Palm vitamin E is comparable to alpha-tocopherol in maintaining bone mineral density in ovariectomised female rats. Exp Clin Endocrinol Diab2000;108:30510.10.1055/s-2000-7758Suche in Google Scholar

81. HaBJ, LeeSH, KimHJ, LeeJY. The role of Salicornia herbacea in ovariectomy-induced oxidative stress. Biol Pharm Bull2006;29:13059.10.1248/bpb.29.1305Suche in Google Scholar

82. OzgocmenS, KayaH, FadilliogluE, AydoganR, YilmazZ. Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem2007;295:4552.10.1007/s11010-006-9270-zSuche in Google Scholar

83. GerdesLC, SonnendeckerEW, PolakowES. Psychological changes effected by estrogen-progestogen and clonidine treatment in climacteric women. Am J Obstet Gynecol1982;142:98104.10.1016/S0002-9378(16)32290-6Suche in Google Scholar

84. KlaiberEL, BrovermanDM, VogelW, KobayashiY. Estrogen therapy for severe persistent depressions in women. Arch Gen Psychiatr1979;36:5504.10.1001/archpsyc.1979.01780050060006Suche in Google Scholar

85. WickelgrenI. Estrogen stakes claim to cognition. Science1997;276:6758.10.1126/science.276.5313.675Suche in Google Scholar

86. ReganRF, GuoY. Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures. Brain Res1997;764:13340.10.1016/S0006-8993(97)00437-XSuche in Google Scholar

87. WoolleyCS, WeilandNG, McEwenBS, SchwartzkroinPA. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci1997;17:184859.10.1523/JNEUROSCI.17-05-01848.1997Suche in Google Scholar

88. OkadaM, HayashiN, KometaniM, NakaoK, InukaiT. Influences of ovariectomy and continuous replacement of 17beta-estradiol on the tail skin temperature and behavior in the forced swimming test in rats. Jpn J Pharmacol1997;73:936.10.1254/jjp.60.93Suche in Google Scholar

89. PorsoltRD, Le PichonM, DepressionJM. A new animal model sensitive to antidepressant treatments. Nature1977;266:7302.10.1038/266730a0Suche in Google Scholar

90. YoshimuraH, KanC. Effect of red ginseng powder on alterations in the tail skin temperature and immobility time in the forced swimming test following bilateral ovariectomy in female rats. JGR1998;25:11720.Suche in Google Scholar

91. RosenCJ. What’s new with PTH in osteoporosis: where are we and where are we headed?Trends Endocrinol Metab2004;15:22933.10.1016/j.tem.2004.05.005Suche in Google Scholar

92. RickardDJ, WangFL, Rodriguez-RojasAM, WuZ, TriceWJ, HoffmanSJ, et al. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone2006;39:136172.10.1016/j.bone.2006.06.010Suche in Google Scholar

93. ShigenoC, YamamotoI, DokohS, HinoM, AokiJ, YamadaK, et al. Identification of 1,24(R)-dihydroxyvitamin D3-like bone-resorbing lipid in a patient with cancer-associated hypercalcemia. J Clin Endocrinol Metab1985;61:7618.10.1210/jcem-61-4-761Suche in Google Scholar

94. SatpathyS, PatraA, PurohitAP. Estrogenic activity of Punica granatum L. peel extract. APJR2013;2:1924.10.1016/S2305-0500(13)60109-8Suche in Google Scholar

95. GambaccianiM, CiaponiM, CappagliB, PiaggesiL, De SimoneL, OrlandiR, et al. Body weight, body fat distribution, and hormonal replacement therapy in early postmenopausal women. J Clin Endocrinol Metab1997;82:41417.10.1210/jcem.82.2.3735Suche in Google Scholar PubMed

96. JonesME, ThorburnAW, BrittKL, HewittKN, WrefordNG, ProiettoJ, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA2000;97:1273540.10.1073/pnas.97.23.12735Suche in Google Scholar PubMed PubMed Central

97. AnwarA, McTernanPG, AndersonLA, AskaaJ, MoodyCG, BarnettAH, et al. Site-specific regulation of oestrogen receptor-alpha and -beta by oestradiol in human adipose tissue. Diab Obes Metab2001;3:33849.10.1046/j.1463-1326.2001.00145.xSuche in Google Scholar PubMed

98. RabieiM, MasoolehIS, LeyliEK, NikoukarLR. Salivary calcium concentration as a screening tool for postmenopausal osteoporosis. Int J Rheum Dis2013;16:198202.10.1111/1756-185X.12003Suche in Google Scholar

99. VissinkAJ, WolfA, VeermanECI. Saliva collectors. In: WongDT editors. Salivary diagnostics, 1st ed. Ames: Wiley-Blackwell, 2008.Suche in Google Scholar

100. LiN, QinLP, HanT, WuYB, ZhangQY, ZhangH. Inhibitory effects of Morinda officinalis extract on bone loss in ovariectomized rats. Molecules2009;14:204961.10.3390/molecules14062049Suche in Google Scholar

101. KimmelDB. Animal models for in vivo experimentation in osteoporosis research. In: MarcusR, FeldmanD, KelseyJ, editors. Osteoporosis. San Diego: Academic Press, 1996.Suche in Google Scholar

102. MaX-Q, ZhengC-J, ZhangY, HuC-L, LinB, FuX-Y, et al. Antiosteoporotic flavonoids from Podocarpium podocarpum. Phytochem Lett2013;6:11822.10.1016/j.phytol.2012.12.004Suche in Google Scholar

103. JeeWSS, YaoW. Overview: animal models of osteopenia and osteoporosis. J Musculoskel Neuron Interact2001;1:193207.Suche in Google Scholar

104. JeeWSS, MaYF, LiXJ. The immobilized adult cancellous bone site in a growing rat as an animal model of human osteoporosis. J Histotechnol1997;20:16.10.1179/his.1997.20.3.201Suche in Google Scholar

105. BainSD, BaileySC, CelinoDL, LantryMM, EdwardsMW. High-dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J Bone Miner Res1993;8:43542.10.1002/jbmr.5650080407Suche in Google Scholar

106. TakahashiK, TsuboyamaT, MatsushitaM, KasaiR, OkumuraH, YamamuroT, et al. Effective intervention of low peak bone mass and bone modeling in the spontaneous murine model off senile osteoporosis, SAM-P/6, by calcium supplement and hormone treatment. Bone1994;15:20915.10.1016/8756-3282(94)90710-2Suche in Google Scholar

Received: 2015-5-19
Accepted: 2015-7-12
Published Online: 2015-7-28
Published in Print: 2015-12-1

©2015 by De Gruyter

Heruntergeladen am 1.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jcim-2015-0034/html?lang=de
Button zum nach oben scrollen