Home The First 50 Contributions to the Data Observer Series – An Overview
Article Publicly Available

The First 50 Contributions to the Data Observer Series – An Overview

  • Joachim Wagner ORCID logo EMAIL logo
Published/Copyright: November 4, 2022

Abstract

Since 2016 the Journal of Economics and Statistics has the Data Observer section with descriptions of data that can be used in empirical research in economics and in the social sciences in general. This note gives a short overview of the first 50 contributions to the series published until 2022.

JEL Classification: C81

1 Introduction

Starting in issue 1 of volume 236 (2016), the Jahrbücher für Nationalökonomie und Statistik/Journal of Economics and Statistics publish a special section entitled Data Observer.[1] Contributions to this series describe data that can be used in empirical research in economics, and in the social sciences in general. While most of these data sets are micro data at the level of individuals, households, or firms (including linked employer–employee data sets), cross section and time series data at an aggregate level are covered as well. The purpose of the contributions to this section is to describe the information that is available in the data sets, to give examples of topics investigated with the data, and to inform readers how to access these data for their own research. The contributions are written by experts who often were in charge of collecting or building the data sets. Furthermore, papers in the series portray the research data centers and data service centers of data producing institutions that allow academic researchers to work with (mostly confidential) micro data for individuals and firms.

This note gives a short overview of the first 50 contributions to the Data Observer series that were published between 2016 and 2022.[2] Twenty one papers deal with data on individuals or household, 12 with data on establishments or enterprises, two with linked employer–employee data, nine cover aggregate data for regions or countries, three look at other data, and three papers introduce research data centers or data service centers that provide data. Table 1 lists all contributions by the broad categories.

Table 1:

Contributions to the Data Observer series in the Journal of Economics and Statistics.

Research Data Centers and Data Service Centers
The Research Data Center PIAAC at GESIS Perry and Rammstedt (2016)
The Research Data Centre of the Halle Institute for Economic Research (FDZ-IWH) Lang and Kuttig (2017)
German Record Linkage Center (GRLC) Antoni and Schnell (2019)
Data on individuals and households
National Education Panel Study (NEPS) Fuß et al. (2016)
Register Data on Voluntary Unemployment Insurance Hofmann et al. (2016)
German Doctoral Candidates and Doctoral Holders Study (ProFile) Lange et al. (2017)
Panel Data on Training Activities – Voucher Recipients and Eligible Employees of the Program Bildungsprämie Görlitz and Tamm (2017)
Financial Incentives on Weight Loss (RWI-Obesity) Eilers and Pilny (2018)
The Administrative Wage and Labor Market Flow Panel Stüber and Seth (2019)
The German Socio-Economic Panel (SOEP) Goebel et al. (2019)
PASS-ADIAB – Linked Survey and Administrative Data for Research on Unemployment and Poverty Antoni and Bethmann (2019)
Early Childhood Education and Care Quality in the Socio-Economic Panel (SOEP) – the K2ID-SOEP Study Spieß et al. (2020)
SHARE-RV: Linked Data to Study Aging in Germany Börsch-Supan et al. (2020)
Statutory Pension Insurance Accounts and Divorce: A New Scientific Use File Keck et al. (2020)
The German Twin Family Panel (TwinLife) Lang et al. (2020)
HILDA: Australian Household Panel Data Watson and Wooden (2021)
BAuA Working Time Survey Wöhrmann et al. (2021)
Green-SÖP: The Socio-ecological Panel Survey: 2012–2016 Klick et al. (2021)
Data for Migration Research from the German Socio-Economic Panel Jacobsen et al. (2021)
SOEP-RV: Linking German SOEP Data tp Pension Records Lüthen et al. (2022)
The Swiss Household Panel (SHP) Tillmann et al. (2022)
The Social Sustainability Barometer 2027 – 2019 Matjeko and Sommer (2022)
Data on Digital Transformation in the German SOEP Fedorets et al. (2022)
The DeZIM panel on migrants in Germany Dollmann et al. (2022)
Data on firms (establishments and enterprises)
The Establishment History Panel Eberle and Schmucker (2017)
The ZEW ICT Survey Bertschek et al. (2018)
The German Management and Organizational Practices (GMOP) Survey Laible and Görg (2019)
The Micro Data Linking-Panel: A Combined Firm Dataset Leppert (2020)
Transaction Data for Germany’s Exports and Imports of Goods Wagner (2020a)
Marmonization of the ifo Business Survey’s Micro Data Link (2020)
Data for Mittelstand Compnies in Germany at the IfM Bonn Schlömer-Laufen and Schneck (2020)
The Top 100 Companies Panel Database Buchwald et al. (2021)
A Dataset for Blockholders in US-Listed Firms Harries (2022)
Combined Business Tax Statistics for Germany Buchner et al. (2022)
Establishments in the COVID-19 crisis in Germany Bellmann et al. (2022)
Supplementary questions in the ifo Business Survey Demmelhuber et al. (2022)
Linked employer–employee data
The Linked Employer–Employee Study of the Socio-Economic Panel (SOEP-LEE) Weinhardt et al. (2017)
The Linked Personnel Panel (LPP) Ruf et al. (2020)
Data for regions and countries
The German Time Series Dataset, 1934–2012 Rahlf (2016)
Exporter and Importer Dynamics Database for Germany Wagner (2016)
RWI-GEO-GRID: Socio-economic data on grid level Breidenbach and Eilers (2018)
Ifo World Economic Survey (WES) Boumans and Garbitz (2017)
Population Projection for Germany 2015–2050 on Grid Level (RWI-GEO-GRID-POP-Forecast) Breidenbach et al. (2019)
The KOF Globalisation Index Haelg (2020)
Regional Real Estate Price Indices for Germany, 2008–2019: RWI-GEO-REDEX Klick and Schaffner (2021)
Business Concentration Data for Germany Heidorn and Weche (2021)
IOER Monitor: Data on Settlement and Open Space in Germany Meinel et al. (2022)
Other data
Survey Data in the Role of Universities in the German Regional Innovation System Warnecke (2018)
Industry Conversion Tables for German Firm-Level Data Dierks et al. (2020)
Tracking the Rise of Robots: The IFR Database Jurkat et al. (2022)
  1. Remark: All contributions are available free of charge at https://www.degruyter.com/journal/key/jbnst/html?lang=en. (aop) refers to contributions that are available “ahead of print” before inclusion in a printed issue.

All contributions to the Data Observer section are available free of charge from the website of the Jahrbücher für Nationalökonomie und Statistik/Journal of Economics and Statistics: https://www.degruyter.com/journal/key/jbnst/html?lang=en.

Those who are interested in contributing to this series are encouraged to contact the editor-in-charge, Joachim Wagner, by sending a mail to .


Corresponding author: Joachim Wagner, Institut für Volkswirtschaftslehre, Leuphana Universität Lüneburg Fakultät Wirtschaft, Scharnhorststr. 1, 21335 Lüneburg, Germany, E-mail:

References

Antoni, M. and Bethmann, A. (2019). PASS-ADIAB – linked survey and administrative data for research on unemployment and poverty. J. Econ. Stat. 239: 747–756, https://doi.org/10.1515/jbnst-2018-0002.Search in Google Scholar

Antoni, M. and Schnell, R. (2019). The past, present and future of the German Record Linkage Center (GRLC). J. Econ. Stat. 239: 319–331, https://doi.org/10.1515/jbnst-2017-1004.Search in Google Scholar

Bellmann, L., Gleiser, P., Hensgen, S., Kagerl, C., Leber, U., Roth, D., Umkehrer, M., and Stegmaier, J. (2022). Establishments in the Covid-19-crisis (BeCovid) – a high – frequency establishment survey to monitor the impact of the Covid-19 pandemic. J. Econ. Stat. 242: 421–430, https://doi.org/10.1515/jbnst-2022-0028.Search in Google Scholar

Bertschek, I., Ohnemus, J., and Viete, S. (2018). The ZEW ICT survey 2002 to 2015: measuring the digital transformation in German firms. J. Econ. Stat. 238: 87–99, https://doi.org/10.1515/jbnst-2016-1005.Search in Google Scholar

Börsch-Supan, A., Czaplicki, C., Friedel, S., Herold, I., Korbmacher, J., and Mika, T. (2020). SHARE-RV: linked data to study aging in Germany. J. Econ. Stat. 240: 121–132, https://doi.org/10.1515/jbnst-2018-0034.Search in Google Scholar

Boumans, D. and Garbitz, J. (2017). Ifo world economic survey database – an international economic expert survey. J. Econ. Stat. 237: 71–80.10.1515/jbnst-2015-1028Search in Google Scholar

Breidenbach, P. and Eilers, L. (2018). RWI-GEO-GRID: socio-economic data on the grid level. J. Econ. Stat. 238: 609–616, https://doi.org/10.1515/jbnst-2017-0171.Search in Google Scholar

Breidenbach, P., Kaeding, M., and Schaffner, S. (2019). Population projection for Germany 2015-2050 on grid level (RWI-GEO-GRID-POP-Forecast). J. Econ. Stat. 239: 733–745, https://doi.org/10.1515/jbnst-2017-0149.Search in Google Scholar

Buchner, M., Eisenmenger, M., Hohlweck, C., and Mödinger, P. (2022) (in press). Combined business tax statistics 2016 of the Federal Statistical Office of Germany – a micro data set for scientific use. J. Econ. Stat. 10.1515/jbnst-2022-0007Search in Google Scholar

Buchwald, A., Hotten, R., Rothbauer, J., and Weche, J.P. (2021). The top 100 companies panel database. Five decades if aggregate concentration surveys in Germany. J. Econ. Stat. 241: 787–800, https://doi.org/10.1515/jbnst-2020-0003.Search in Google Scholar

Demmelhuber, K., Sauer, S., and Wohlrabe, K. (2022) (in press). Beyond the business climate: supplementary questions in the ifo business survey. J. Econ. Stat., https://doi.org/10.1515/jbnst-2022-0032.Search in Google Scholar

Dierks, S., Schiersch, A., and Stede, J. (2020). Industry conversation tables for German firm-level data. J. Econ. Stat. 240: 677–690, https://doi.org/10.1515/jbnst-2019-0041.Search in Google Scholar

Dollmann, J., Mayer, S.J., Lietz, A., Siegel, M., and Köhler, J. (2022) (in press). The DeZIM panel- data for Germany’s post-migrant society. J. Econ. Stat. 10.1515/jbnst-2022-0025Search in Google Scholar

Eberle, J. and Schmucker, A. (2017). The establishment history panel – redesign and update 2016. J. Econ. Stat. 237: 535–547, https://doi.org/10.1515/jbnst-2016-1001.Search in Google Scholar

Eilers, L. and Pilny, A. (2018). Data from a randomized experiment: financial incentives on weight loss (RWI-Obesity). J. Econ. Stat. 238: 591–600, https://doi.org/10.1515/jbnst-2017-0138.Search in Google Scholar

Fedorets, A., Kirchner, S., Adriaans, J., and Giering, O. (2022). Data on digital transformation in the German socio-economic panel. J. Econ. Stat. 242: 691–705.10.1515/jbnst-2021-0056Search in Google Scholar

Fuß, D., von Maurice, J., and Roßbach, H.-G. (2016). A unique research data infrastructure für educational reserach and beyond: the National Educational Panel Study. J. Econ. Stat. 236: 517–528, https://doi.org/10.1515/jbnst-2015-1021.Search in Google Scholar

Goebel, J., Grabka, M.M., Liebig, S., Kroh, M., Richter, D., Schröder, C., and Schupp, J. (2019). The German socio-economic panel (SOEP). J. Econ. Stat. 239: 345–360, https://doi.org/10.1515/jbnst-2018-0022.Search in Google Scholar

Görlitz, K. and Tamm, M. (2017). Panel data on training activities – vourcher recipients and eligible employees of the program bildungsprämie. J. Econ. Stat. 237: 365–371, https://doi.org/10.1515/jbnst-2015-1041.Search in Google Scholar

Haelg, F. (2020). The KOF globalisation index – a multidimensional approach to globalisatuion. J. Econ. Stat. 240: 691–696, https://doi.org/10.1515/jbnst-2019-0045.Search in Google Scholar

Harries, J.P. (2022). A dataset for blockholders in US-listed firms. J. Econ. Stat. 242: 521–528.10.1515/jbnst-2021-0033Search in Google Scholar

Heidorn, H. and Weche, J.P. (2021). Business concentration data for Germany. J. Econ. Stat. 241: 801–811, https://doi.org/10.1515/jbnst-2020-0010.Search in Google Scholar

Hofmann, B., Köhler, M., and Oberfichtner, M. (2016). New register data from the German public employment service on voluntary unemployment insurance. J. Econ. Stat. 236: 665–671, https://doi.org/10.1515/jbnst-2015-1025.Search in Google Scholar

Jacobsen, J., Krieger, M., Schikora, F., and Schupp, J. (2021). Growing potentials for migration research using the German socio-economic panel study. J. Econ. Stat. 241: 527–549, https://doi.org/10.1515/jbnst-2021-0001.Search in Google Scholar

Jurkat, A., Klump, R., and Schneider, F. (2022). Tracing the rise of robots: the IFR database. J. Econ. Stat. 242: 669–689.10.1515/jbnst-2021-0059Search in Google Scholar

Keck, W., Radenacker, A., Brüggmann, D., Kreyenfeld, M., and Mika, T. (2020). Statutory pension insurance accounts and divorse: a new scientific use file. J. Econ. Stat. 240: 825–835, https://doi.org/10.1515/jbnst-2019-0064.Search in Google Scholar

Klick, L., Kussel, G., and Sommer, S. (2021). Green-SÖP: the socio-ecological panel survey: 2012–2016. J. Econ. Stat. 241: 405–414, https://doi.org/10.1515/jbnst-2020-0065.Search in Google Scholar

Klick, L. and Schaffner, S. (2021). Regional real estate price indices for Germany, 2008–2019: RWI-GEO-REDEX. J. Econ. Stat. 241: 119–129, https://doi.org/10.1515/jbnst-2020-0001.Search in Google Scholar

Laible, M.-C. and Görg, H. (2019). The German management and organizational practices (GMOP) survey. J. Econ. Stat. 239: 723–732, https://doi.org/10.1515/jbnst-2017-1003.Search in Google Scholar

Lang, C. and Kuttig, T. (2017). The research data centre at the Halle Institute for Economic Research – member of the Leibniz Association FDZ-IWH. J. Econ. Stat. 237: 151–158, https://doi.org/10.1515/jbnst-2015-1036.Search in Google Scholar

Lange, J., Lietz, A., Ambrasat, J., Tesch, J., and Wegner, A. (2017). The German doctoral candidates and doctorate holders study ProFile. J. Econ. Stat. 237: 349–363, https://doi.org/10.1515/jbnst-2015-1037.Search in Google Scholar

Lang, V., Weigel, L., Mönkediek, B., Baum, M.A., Eichhorn, H., Eifler, E.F., Hahn, E., Hufer, A., Klatzka, C.H., Kottwitz, A., et al.. (2020). An introduction to the German twin family panel (TwinLife). J. Econ. Stat. 240: 837–847, https://doi.org/10.1515/jbnst-2019-0066.Search in Google Scholar

Leppert, P. (2020). The micro data linking-panel: a combined firm dataset. J. Econ. Stat. 240: 525–535, https://doi.org/10.1515/jbnst-2019-0013.Search in Google Scholar

Link, S. (2020). Harmonization of the ifo business survey’s micro data. J. Econ. Stat. 240: 543–555, https://doi.org/10.1515/jbnst-2019-0042.Search in Google Scholar

Lüthen, H., Schröder, C., Grabka, M.M., Goebel, J., Mika, T., Brüggmann, D., Ellert, S., and Penz, H. (2022). SOEP-RV: linking German socio-economic panel data to pension records. J. Econ. Stat. 242: 291–307, https://doi.org/10.1515/jbnst-2021-0020.Search in Google Scholar

Matjeko, L. and Sommer, S. (2022). The social sustainability barometer 2017–2019: survey data on the energiewende. J. Econ. Stat. 242: 529–545.10.1515/jbnst-2021-0049Search in Google Scholar

Meinel, G., Kumar, S.S., and Krueger, T. (2022). IOER monitor: a spatio-temporal research data infrastructure on settlement and open space development in Germany. J. Econ. Stat. 242: 159–170, https://doi.org/10.1515/jbnst-2021-0009.Search in Google Scholar

Perry, A. and Rammstedt, B. (2016). The research data center PIAAC at GESIS. J. Econ. Stat. 236: 581–593, https://doi.org/10.1515/jbnst-2015-1024.Search in Google Scholar

Rahlf, T. (2016). The German time series dataset, 1834–2012. J. Econ. Stat. 236: 129–143, https://doi.org/10.1515/jbnst-2015-1005.Search in Google Scholar

Ruf, K., Mackeben, J., Grunau, P., and Wolter, S. (2020). A unique employer-employee study: the linked personnel panel (LPP) – design, extensions and research potential. J. Econ. Stat. 240: 133–145, https://doi.org/10.1515/jbnst-2018-0045.Search in Google Scholar

Schlömer-Laufen, N. and Schneck, S. (2020). Data for mittelstand companies in Germany at the IfM bonn. J. Econ. Stat. 240: 849–859, https://doi.org/10.1515/jbnst-2019-0070.Search in Google Scholar

Spieß, C.K., Schober, P.S., and Stahl, J.F. (2020). Early childhood education and care quality in the socio-economic panel (SOEP) – the K2ID-soep study. J. Econ. Stat. 240: 111–120, https://doi.org/10.1515/jbnst-2018-0001.Search in Google Scholar

Stüber, H. and Seth, S. (2019). The public release data of the administrative wage and labor market plow panel. J. Econ. Stat. 239: 333–344, https://doi.org/10.1515/jbnst-2017-1002.Search in Google Scholar

Tillmann, R., Voorpostel, M., Antal, E., Dasoki, N., Klaas, H., Kuhn, U., Lebert, F., Monsch, G.-A., and Ryser, V.A. (2022). The Swiss household panel (SHP). J. Econ. Stat. 242: 403–420, https://doi.org/10.1515/jbnst-2021-0039.Search in Google Scholar

Wagner, J. (2015). All along the data watch tower: 15 years of European data watch. J. Appl. Soc. Sci. Stud. 135: 401–410, https://doi.org/10.3790/schm.135.3.401.Search in Google Scholar

Wagner, J. (2016). Exporter and importer dynamics database for Germany. J. Econ. Stat. 236: 411–420, https://doi.org/10.1515/jbnst-2015-1015.Search in Google Scholar

Wagner, J. (2020a). Transaction data for Germany’s exports and import of goods. J. Econ. Stat. 240: 537–542, https://doi.org/10.1515/jbnst-2019-0040.Search in Google Scholar

Wagner, J. (2020b). Data Observer – Fünf Jahre Service für die empirische Wirtschaftsforschung. Perspekt. Wirtsch. 21: 422–424, https://doi.org/10.1515/pwp-2020-0007.Search in Google Scholar

Warnecke, C. (2018). New survey data on the role of universities in the German regional innovation system. J. Econ. Stat. 238: 601–608, https://doi.org/10.1515/jbnst-2017-0159.Search in Google Scholar

Watson, N. and Wooden, M. (2021). The household, income and labour dynamics in Australia (HILDA) survey. J. Econ. Stat. 241: 131–141, https://doi.org/10.1515/jbnst-2020-0029.Search in Google Scholar

Weinhardt, M., Meyermann, A., Liebig, S., and Schupp, J. (2017). The linked employer-employee study of the socio-economic panel (SOEP-LEE): content, design and research potential. J. Econ. Stat. 237: 457–467, https://doi.org/10.1515/jbnst-2015-1044.Search in Google Scholar

Wöhrmann, A.M., Brauner, C., and Michel, A. (2021). BAuA-working time survey (BAuA-WTS; BAuA-arbeitszeitbefragung). J. Econ. Stat. 241: 287–295, https://doi.org/10.1515/jbnst-2020-0035.Search in Google Scholar

Received: 2022-09-30
Accepted: 2022-10-01
Published Online: 2022-11-04
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jbnst-2022-0061/html
Scroll to top button