Home Medicine The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review
Article
Licensed
Unlicensed Requires Authentication

The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review

  • Krishnendu Adhikary ORCID logo , Riya Sarkar , Sriparna Maity , Ipsita Banerjee , Prity Chatterjee , Koushik Bhattacharya ORCID logo , Deepika Ahuja , Nirmalya Kumar Sinha and Rajkumar Maiti ORCID logo EMAIL logo
Published/Copyright: May 16, 2024

Abstract

Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered ‘generation’ of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.


Corresponding author: Dr. Rajkumar Maiti, Assistant Professor & Head, Department of Physiology, Bankura Christian College, Bankura, West Bengal, 722101, India, E-mail:

Acknowledgments

The Principal of Bankura Christian College and Director, Paramedical College Durgapur is to be thanked by the authors for their unwavering inspiration and spiritual support of the review work.

  1. Research ethics: Not applicable.

  2. Informed consent: Not required.

  3. Author contributions: KA, RS, and SM: Conceptualization, data curation, writing, and original draft preparation. RM: Methodology, data curation, writing (original draft preparation), reviewing, and editing. IB, PC, KB, DA and NKS: Conceptualization, validation, writing, reviewing, and editing.

  4. Competing interests: The authors declare that they have no conflict of interest in the present review work. The manuscript has not been submitted for publication in another journal.

  5. Research funding: The current review was conducted without support from any extramural sources.

  6. Data availability: Not required.

References

1. Padhi, S, Nayak, AK, Behera, A. Type II diabetes mellitus: a review on recent drug-based therapeutics. Biomed Pharmacother 2020;131:110708. https://doi.org/10.1016/j.biopha.2020.110708.Search in Google Scholar PubMed

2. Nauck, MA, Meier, JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016;4:525–36. https://doi.org/10.1016/S2213-8587(15)00482-9.Search in Google Scholar PubMed

3. Tanase, DM, Gosav, EM, Neculae, E, Costea, CF, Ciocoiu, M, Hurjui, LL, et al.. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients 2020;12:3719. https://doi.org/10.3390/nu12123719.Search in Google Scholar PubMed PubMed Central

4. Nery, C, Moraes, SRA, Novaes, KA, Bezerra, MA, Silveira, PVC, Lemos, A, et al.. Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis. Braz J Phys Ther 2017;21:400–15. https://doi.org/10.1016/j.bjpt.2017.06.004.Search in Google Scholar PubMed PubMed Central

5. Petrie, MC, Verma, S, Docherty, KF, Inzucchi, SE, Anand, I, Belohlávek, J, et al.. Effect of Dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA 2020;323:1353–68. https://doi.org/10.1001/jama.2020.1906.Search in Google Scholar PubMed PubMed Central

6. Palumbo, C, Nicolaci, N, La Manna, AA, Branek, N, Pissano, MN. Association between central diabetes insipidus and type 2 diabetes mellitus. Medicina 2018;78:127–30.Search in Google Scholar

7. Palacios, OM, Kramer, M, Maki, KC. Diet and prevention of type 2 diabetes mellitus: beyond weight loss and exercise. Expet Rev Endocrinol Metabol 2019;14:1–12. https://doi.org/10.1080/17446651.2019.1554430.Search in Google Scholar PubMed

8. Dagogo-Jack, S, Santiago, JV. Pathophysiology of type 2 diabetes and modes of action of therapeutic interventions. Arch Intern Med 1997;157:1802–17. https://doi.org/10.1001/archinte.157.16.1802.Search in Google Scholar

9. Mortada, I. Hyperuricemia, Type 2 Diabetes mellitus, and hypertension: an emerging association. Curr Hypertens Rep 2017;19:69. https://doi.org/10.1007/s11906-017-0770-x.Search in Google Scholar PubMed

10. Agarwal, R, Anker, SD, Bakris, G, Filippatos, G, Pitt, B, Rossing, P, et al.. Investigating new treatment opportunities for patients with chronic kidney disease in type 2 diabetes: the role of finer none. Nephrol Dial Transplant 2022;37:1014–23. https://doi.org/10.1093/ndt/gfaa294.Search in Google Scholar PubMed PubMed Central

11. Arif, M, Sadayappan, S, Becker, RC, Martin, LJ, Urbina, EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019;42:1099–113. https://doi.org/10.1038/s41440-019-0248-0.Search in Google Scholar PubMed

12. Adriaenssens, AE, Biggs, EK, Darwish, T, Tadross, J, Sukthankar, T, Girish, M, et al.. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metabol 2019;30:987–96.e6. https://doi.org/10.1016/j.cmet.2019.07.013.Search in Google Scholar PubMed PubMed Central

13. Kamarudin, MNA, Sarker, MMR, Zhou, JR, Parhar, I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Eexp Clin Cancer Res 2019;38:491. https://doi.org/10.1186/s13046-019-1495-2.Search in Google Scholar PubMed PubMed Central

14. Sharma, D, Verma, S, Vaidya, S, Kalia, K, Tiwari, V. Recent updates on GLP-1 agonists: current advancements and challenges. Biomed Pharmacother 2018;108:952–62. https://doi.org/10.1016/j.biopha.2018.08.088.Search in Google Scholar PubMed

15. Musale, V, Abdel-Wahab, YHA, Flatt, PR, Conlon, JM, Mangoni, ML. Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids 2018;50:723–34. https://doi.org/10.1007/s00726-018-2551-5.Search in Google Scholar PubMed

16. Burillo, J, Marqués, P, Jiménez, B, González-Blanco, C, Benito, M, Guillén, C. Insulin resistance and diabetes mellitus in Alzheimer’s disease. Cells 2021;10:1236. https://doi.org/10.3390/cells10051236.Search in Google Scholar PubMed PubMed Central

17. DeFronzo, RA, Ferrannini, E, Groop, L, Henry, RR, Herman, WH, Holst, JJ, et al.. Type 2 diabetes mellitus. Nat Rev Dis Prim 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.Search in Google Scholar PubMed

18. Hudish, LI, Reusch, JE, Sussel, L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019;129:4001–8. https://doi.org/10.1172/JCI129188.Search in Google Scholar PubMed PubMed Central

19. Taylor, R, Al-Mrabeh, A, Sattar, N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 2019;7:726–36. https://doi.org/10.1016/S2213-8587(19)30076-2.Search in Google Scholar PubMed

20. Sarparanta, J, García-Macia, M, Singh, R. Autophagy and mitochondria in obesity and type 2 Diabetes. Curr Diabetes Rev 2017;13:352–69. https://doi.org/10.2174/1573399812666160217122530.Search in Google Scholar PubMed

21. Maiti, R. Hypoglycemic and antioxidant potency of ethyl acetate fraction of hydro-methanolic extract (60:40) of Tamarindus indica Linn. seed in streptozotocin-induced diabetic experimental animal. Int J Health Sci 2021;6:11164–82. https://doi.org/10.53730/ijhs.v6nS5.10964.Search in Google Scholar

22. Maiti, R, Das, UK, Ghosh, D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull 2005;28:1172–6. https://doi.org/10.1248/bpb.28.1172.Search in Google Scholar PubMed

23. Kahn, SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003;46:3–19. https://doi.org/10.1007/s00125-002-1009-0.Search in Google Scholar PubMed

24. Franks, PW, McCarthy, MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science 2016;354:69–73. https://doi.org/10.1126/science.aaf5094.Search in Google Scholar PubMed

25. Lyssenko, V, Lupi, R, Marchetti, P, Del Guerra, S, Orho-Melander, M, Almgren, P, et al.. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007;117:2155–63. https://doi.org/10.1172/JCI30706.10.1172/JCI30706Search in Google Scholar PubMed PubMed Central

26. Tarnowski, M, Malinowski, D, Safranow, K, Dziedziejko, V, Czerewaty, M, Pawlik, A. Haematopoietically expressed homeobox (HHEX) gene polymorphism (rs5015480) is associated with increased risk of gestational diabetes mellitus. Clin Genet 2017;91:843–8. https://doi.org/10.1111/cge.12875.Search in Google Scholar PubMed

27. Wang, J, Kilic, G, Aydin, M, Burke, Z, Oliver, G, Sosa-Pineda, B. Controls pancreas morphogenesis and participates in the production of "secondary transition" pancreatic endocrine cells. Dev Biol 2005;286:182–94. https://doi.org/10.1016/j.ydbio.2005.07.021.Search in Google Scholar PubMed

28. Franks, PW. Gene × environment interactions in type 2 diabetes. Curr Diabetes Rep 2011;11:552–61. https://doi.org/10.1007/s11892-011-0224-9.Search in Google Scholar PubMed

29. Aune, D, Norat, T, Leitzmann, M, Tonstad, S, Vatten, LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol 2015;30:529–42. https://doi.org/10.1007/s10654-015-0056-z.Search in Google Scholar PubMed

30. Shan, Z, Ma, H, Xie, M, Yan, P, Guo, Y, Bao, W, et al.. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 2015;38:529–37. https://doi.org/10.2337/dc14-2073.Search in Google Scholar PubMed

31. Pan, A, Wang, Y, Talaei, M, Hu, FB, Wu, T. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2015;3:958–67. https://doi.org/10.1016/S2213-8587(15)00316-2.Search in Google Scholar PubMed PubMed Central

32. Talaei, M, Wang, YL, Yuan, JM, Pan, A, Koh, WP. Meat, dietary heme iron, and risk of type 2 diabetes mellitus: the Singapore Chinese Health Study. Am J Epidemiol 2017;186:824–33. https://doi.org/10.1093/aje/kwx156.Search in Google Scholar PubMed PubMed Central

33. Wallace, MD, Metzger, NL. Optimizing the treatment of steroid-induced hyperglycemia. Ann Pharmacother 2018;52:86–90. https://doi.org/10.1177/1060028017728297.Search in Google Scholar PubMed

34. Bonaventura, A, Montecucco, F. Steroid-induced hyperglycemia: an underdiagnosed problem or clinical inertia? A narrative review. Diabetes Res Clin Pract 2018;139:203–20. https://doi.org/10.1016/j.diabres.2018.03.006.Search in Google Scholar PubMed

35. Shah, P, Kalra, S, Yadav, Y, Deka, N, Lathia, T, Jacob, JJ, et al.. Management of glucocorticoid-induced hyperglycemia. Diabetes Metab Syndr Obes 2022;15:1577–88. https://doi.org/10.2147/DMSO.S330253.Search in Google Scholar PubMed PubMed Central

36. Uchinuma, H, Ichijo, M, Harima, N, Tsuchiya, K. Dulaglutide improves glucocorticoid-induced hyperglycemia in inpatient care and reduces dose and injection frequency of insulin. BMC Endocr Disord 2020;20:58. https://doi.org/10.1186/s12902-020-0542-5.Search in Google Scholar PubMed PubMed Central

37. Do, TTH, Marie, G, Héloïse, D, Guillaume, D, Marthe, M, Bruno, F, et al.. Glucocorticoid-induced insulin resistance is related to macrophage visceral adipose tissue infiltration. J Steroid Biochem Mol Biol 2019;185:150–62. https://doi.org/10.1016/j.jsbmb.2018.08.010.Search in Google Scholar PubMed

38. vanBommel, EJM, de Jongh, RT, Brands, M, Heijboer, AC, den Heijer, M, Serlie, MJ, et al.. The osteoblast: linking glucocorticoid-induced osteoporosis and hyperglycaemia? A post-hoc analysis of a randomised clinical trial. Bone 2018;112:173–6. https://doi.org/10.1016/j.bone.2018.04.025.Search in Google Scholar PubMed

39. Merkofer, F, Struja, T, Delfs, N, Spagnuolo, CC, Hafner, JF, Kupferschmid, K, et al.. Glucose control after glucocorticoid administration in hospitalized patients – a retrospective analysis. BMC Endocr Disord 2022;22:8. https://doi.org/10.1186/s12902-021-00914-3.Search in Google Scholar PubMed PubMed Central

40. Nunes, EA, Gonçalves-Neto, LM, Ferreira, FB, dos Santos, C, Fernandes, LC, Boschero, AC, et al.. Glucose intolerance induced by glucocorticoid excess is further impaired by co-administration with β-hydroxy-β-methylbutyrate in rats. Appl Physiol Nutr Metabol 2013;38:1137–46. https://doi.org/10.1139/apnm-2012-0456.Search in Google Scholar PubMed

41. Gado, M, Heinrich, A, Wiedersich, D, Sameith, K, Dahl, A, Alexaki, VI, et al.. Activation of β-adrenergic receptor signaling prevents glucocorticoid-induced obesity and adipose tissue dysfunction in male mice. Am J Physiol Endocrinol Metab 2023;324:E514–30. https://doi.org/10.1152/ajpendo.00259.2022.Search in Google Scholar PubMed

42. Arif, M, Sadayappan, S, Becker, RC, Martin, LJ, Urbina, EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019;42:1099–113. https://doi.org/10.1038/s41440-019-0248-0.Search in Google Scholar PubMed

43. Dayeh, T, Ling, C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015;93:511–21. https://doi.org/10.1139/bcb-2015-0057.Search in Google Scholar PubMed

44. Karachanak-Yankova, S, Dimova, R, Nikolova, D, Nesheva, D, Koprinarova, M, Maslyankov, S, et al.. Epigenetic alterations in patients with type 2 diabetes mellitus. Balkan J Med Genet 2016;18:15–24. https://doi.org/10.1515/bjmg-2015-0081.Search in Google Scholar PubMed PubMed Central

45. Moosavi, A, Motevalizadeh Ardekani, A. Role of epigenetics in biology and human diseases. Iran Biomed J 2016;20:246–58. https://doi.org/10.22045/ibj.2016.01.Search in Google Scholar PubMed PubMed Central

46. Luo, A, Xie, Z, Wang, Y, Wang, X, Li, S, Yan, J, et al.. Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022;137:104642. https://doi.org/10.1016/j.neubiorev.2022.104642.Search in Google Scholar PubMed

47. Cao, H, Baranova, A, Wei, X, Wang, C, Zhang, F. Bidirectional causal associations between type 2 diabetes and COVID-19. J Med Virol 2023;95:e28100. https://doi.org/10.1002/jmv.28100.Search in Google Scholar PubMed PubMed Central

48. Xue, A, Wu, Y, Zhu, Z, Zhang, F, Kemper, KE, Zheng, Z, et al.. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 2018;9:2941. https://doi.org/10.1038/s41467-018-04951-w.Search in Google Scholar PubMed PubMed Central

49. Liu, Z, Dai, X, Zhang, H, Shi, R, Hui, Y, Jin, X, et al.. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun 2020;11:855. https://doi.org/10.1038/s41467-020-14676-4.Search in Google Scholar PubMed PubMed Central

50. Cefalu, WT. Insulin resistance: cellular and clinical concepts. Exp Biol Med 2001;226:13–26. https://doi.org/10.1177/153537020122600103.Search in Google Scholar PubMed

51. Trümper, A, Trümper, K, Trusheim, H, Arnold, R, Göke, B, Hörsch, D. Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 2001;15:1559–70. https://doi.org/10.1210/mend.15.9.0688.Search in Google Scholar PubMed

52. Schirra, J, Katschinski, M, Weidmann, C, Schäfer, T, Wank, U, Arnold, R, et al.. Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Investig 1996;97:92–103. https://doi.org/10.1172/JCI118411.Search in Google Scholar PubMed PubMed Central

53. Kim, W, Egan, JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470–512. https://doi.org/10.1124/pr.108.000604.Search in Google Scholar PubMed PubMed Central

54. Gérard, C, Vidal, H. Impact of gut microbiota on host glycemic control. Front Endocrinol 2019;10:29. https://doi.org/10.3389/fendo.2019.00029.Search in Google Scholar PubMed PubMed Central

55. Lewis, DM. A Systematic review of exocrine pancreatic insufficiency prevalence and treatment in type 1 and type 2 diabetes. Diabetes Technol Therapeut 2023;25:659–72. https://doi.org/10.1089/dia.2023.0157.Search in Google Scholar PubMed

56. Kong, D, Vong, L, Parton, LE, Ye, C, Tong, Q, Hu, X, et al.. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabol 2010;12:545–52. https://doi.org/10.1016/j.cmet.2010.09.013.Search in Google Scholar PubMed PubMed Central

57. Mergenthaler, P, Lindauer, U, Dienel, GA, Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013;36:587–97. https://doi.org/10.1016/j.tins.2013.07.001.Search in Google Scholar PubMed PubMed Central

58. Macedo, MP, Lima, IS, Gaspar, JM, Afonso, RA, Patarrão, RS, Kim, YB, et al.. Risk of postprandial insulin resistance: the liver/vagus rapport. Rev Endocr Metab Disord 2014;15:67–77. https://doi.org/10.1007/s11154-013-9281-5.Search in Google Scholar PubMed PubMed Central

59. Yoon, NA, Diano, S. Hypothalamic glucose-sensing mechanisms. Diabetologia 2021;64:985–93. https://doi.org/10.1007/s00125-021-05395-6.Search in Google Scholar PubMed PubMed Central

60. Henriksen, EJ, Diamond-Stanic, MK, Marchionne, EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 2011;51:993–9. https://doi.org/10.1016/j.freeradbiomed.2010.12.005.Search in Google Scholar PubMed PubMed Central

61. Chan, O, Sherwin, R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metabol 2013;24:616–24. https://doi.org/10.1016/j.tem.2013.08.005.Search in Google Scholar PubMed PubMed Central

62. Azzalin, A, Nato, G, Parmigiani, E, Garello, F, Buffo, A, Magrassi, L, et al.. Inhibitors of GLUT/SLC2A enhance the action of BCNU and temozolomide against high-grade gliomas. Neoplasia 2017;19:364–73. https://doi.org/10.1016/j.neo.2017.02.009.Search in Google Scholar PubMed PubMed Central

63. Tilekar, K, Upadhyay, N, Hess, JD, Macias, LH, Mrowka, P, Aguilera, RJ, et al.. anti-leukemic potential. Eur J Med Chem 2020;202:112603. https://doi.org/10.1016/j.ejmech.2020.112603.Search in Google Scholar PubMed PubMed Central

64. Reckzeh, ES, Waldmann, H. Development of glucose transporter (GLUT) inhibitors. Eur J Org Chem 2020;2020:2321–9. https://doi.org/10.1002/ejoc.201901353.Search in Google Scholar PubMed PubMed Central

65. Kitagawa, M, Ikeda, S, Tashiro, E, Soga, T, Imoto, M. Metabolomic identification of the target of the filopodia protrusion inhibitor glucopiericidin A. Chem Biol 2010;17:989–98. https://doi.org/10.1016/j.chembiol.2010.06.017.Search in Google Scholar PubMed

66. Kasahara, T, Kasahara, M. Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Biochem J 1996;315:177–82. https://doi.org/10.1042/bj3150177.Search in Google Scholar PubMed PubMed Central

67. Liu, Y, Cao, Y, Zhang, W, Bergmeier, S, Qian, Y, Akbar, H, et al.. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Therapeut 2012;11:1672–82. https://doi.org/10.1158/1535-7163.MCT-12-0131.Search in Google Scholar PubMed

68. Caruso, MA, Sheridan, MA. The expression of insulin and insulin receptor mRNAs is regulated by nutritional state and glucose in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2012;175:321–8. https://doi.org/10.1016/j.ygcen.2011.11.029.Search in Google Scholar PubMed

69. Vajo, Z, Duckworth, WC. Genetically engineered insulin analogs: diabetes in the new millennium. Pharmacol Rev 2000;52:1–9.10.1016/S0031-6997(24)01433-9Search in Google Scholar

70. Vajo, Z, Fawcett, J, Duckworth, WC. Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocr Rev 2001;22:706–17. https://doi.org/10.1210/edrv.22.5.0442.Search in Google Scholar PubMed

71. Liu, Y, Cao, Y, Zhang, W, Bergmeier, S, Qian, Y, Akbar, H, et al.. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun 2020;11:5015. https://doi.org/10.1038/s41467-020-18414-8.Search in Google Scholar PubMed PubMed Central

72. Gurung, M, Li, Z, You, H, Rodrigues, R, Jump, DB, Morgun, A, et al.. Role of gut microbiota in type 2 diabetes pathophysiology. Biomedicine 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051.Search in Google Scholar PubMed PubMed Central

73. Sharma, S, Tripathi, P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem 2019;63:101–8. https://doi.org/10.1016/j.jnutbio.2018.10.003.Search in Google Scholar PubMed

74. Zhou, Z, Sun, B, Yu, D, Zhu, C. Gut microbiota: an important player in type 2 diabetes mellitus. Front Cell Infect Microbiol 2022;12:834485. https://doi.org/10.3389/fcimb.2022.834485.Search in Google Scholar PubMed PubMed Central

75. Scheithauer, TPM, Rampanelli, E, Nieuwdorp, M, Vallance, BA, Verchere, CB, van Raalte, DH, et al.. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol 2020;11:571731. https://doi.org/10.3389/fimmu.2020.571731.Search in Google Scholar PubMed PubMed Central

76. Yang, G, Wei, J, Liu, P, Zhang, Q, Tian, Y, Hou, G, et al.. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021;117:154712. https://doi.org/10.1016/j.metabol.2021.154712.Search in Google Scholar PubMed

77. Qi, Q, Li, J, Yu, B, Moon, JY, Chai, JC, Merino, J, et al.. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 2022;71:1095–105. https://doi.org/10.1136/gutjnl-2021-324053.Search in Google Scholar PubMed PubMed Central

78. Muñoz-Garach, A, Diaz-Perdigones, C, Tinahones, FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr 2016;63:560–8. https://doi.org/10.1016/j.endonu.2016.07.008.Search in Google Scholar PubMed

79. Zhai, L, Wu, J, Lam, YY, Kwan, HY, Bian, ZX, Wong, HLX. Gut-microbial metabolites, probiotics and their roles in type 2 diabetes. Int J Mol Sci 2021;22:12846. https://doi.org/10.3390/ijms222312846.Search in Google Scholar PubMed PubMed Central

80. Hosomi, K, Saito, M, Park, J, Murakami, H, Shibata, N, Ando, M, et al.. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun 2022;13:4477. https://doi.org/10.1038/s41467-022-32015-7.Search in Google Scholar PubMed PubMed Central

81. Salgaço, MK, Oliveira, LGS, Costa, GN, Bianchi, F, Sivieri, K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 2019;103:9229–38. https://doi.org/10.1007/s00253-019-10156-y.Search in Google Scholar PubMed

82. Cui, A, Fan, H, Zhang, Y, Zhang, Y, Niu, D, Liu, S, et al.. Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J Clin Invest 2019;129:2266–78. https://doi.org/10.1172/JCI66062.Search in Google Scholar PubMed PubMed Central

83. Elena, C, Chiara, M, Angelica, B, Chiara, MA, Laura, N, Chiara, C, et al.. Hyperglycemia and diabetes induced by glucocorticoids in nondiabetic and diabetic patients: revision of literature and personal considerations. Curr Pharm Biotechnol 2018;19:1210–20. https://doi.org/10.2174/1389201020666190102145305.Search in Google Scholar PubMed

84. Brooks, D, Schulman-Rosenbaum, R, Griff, M, Lester, J, Low Wang, CC. Glucocorticoid-induced hyperglycemia including dxamethasone-associated hyperglycemia in COVID-19 infection: a systematic review. Endocr Pract 2022;28:1166–77. https://doi.org/10.1016/j.eprac.2022.07.014.Search in Google Scholar PubMed PubMed Central

85. Stone, AC, Dungan, K, Gaborcik, JW. Insulin NPH for steroid-induced hyperglycemia: predictors for success. Pharmacother 2021;41:804–10. https://doi.org/10.1002/phar.2616.Search in Google Scholar PubMed

86. Brady, VJ, Grimes, D, Armstrong, T, LoBiondo-Wood, G. Management of steroid-induced hyperglycemia in hospitalized patients with cancer: a review. Oncol Nurs Forum 2014;41:E355–65. https://doi.org/10.1188/14.ONF.E355-E365.Search in Google Scholar PubMed

87. Fathallah, N, Slim, R, Larif, S, Hmouda, H, Ben Salem, C. Drug-induced hyperglycaemia and diabetes. Drug Saf 2015;38:1153–68. https://doi.org/10.1007/s40264-015-0339-z.Search in Google Scholar PubMed

88. Myers, AK, Khan, M, Choi, S, Garnica, P, Stoffels, G, Lin, A, et al.. Implementation of a weight-based protocol for the management of steroid-induced hyperglycemia. Am J Therapeut 2020;27:e392–9. https://doi.org/10.1097/MJT.0000000000000998.Search in Google Scholar PubMed

89. Lu, Y, Wang, E, Chen, Y, Zhou, B, Zhao, J, Xiang, L, et al.. Obesity-induced excess of 17-hydroxyprogesterone promotes hyperglycemia through activation of glucocorticoid receptor. J Clin Invest 2020;130:3791–804. https://doi.org/10.1172/JCI134485.Search in Google Scholar PubMed PubMed Central

90. Dutcher, JM, Creswell, JD. The role of brain reward pathways in stress resilience and health. Neurosci Biobehav Rev 2018;95:559–67. https://doi.org/10.1016/j.neubiorev.2018.10.014.Search in Google Scholar PubMed

91. de Vos, WM, Tilg, H, Van Hul, M, Cani, PD. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020–32. https://doi.org/10.1136/gutjnl-2021-326789.Search in Google Scholar PubMed PubMed Central

92. Iatcu, CO, Steen, A, Covasa, M. Gut microbiota and complications of type-2 diabetes. Nutritients 2021;14:166. https://doi.org/10.3390/nu14010166.Search in Google Scholar PubMed PubMed Central

93. Makki, K, Deehan, EC, Walter, J, Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018;23:705–15. https://doi.org/10.1016/j.chom.2018.05.012.Search in Google Scholar PubMed

94. Cani, PD. Human gut microbiome: hopes, threats and promises. Gut 2018;67:1716–25. https://doi.org/10.1136/gutjnl-2018-316723.Search in Google Scholar PubMed PubMed Central

95. Rodrigues, VF, Elias-Oliveira, J, Pereira, ÍS, Pereira, JA, Barbosa, SC, Machado, MSG, et al.. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol 2022;13:934695. https://doi.org/10.3389/fimmu.2022.934695.Search in Google Scholar PubMed PubMed Central

96. Singer-Englar, T, Barlow, G, Mathur, R. Obesity, diabetes, and the gut microbiome: an updated review. Expet Rev Gastroenterol Hepatol 2019;13:3–15. https://doi.org/10.1080/17474124.2019.1543023.Search in Google Scholar PubMed

97. Hasani, A, Ebrahimzadeh, S, Hemmati, F, Khabbaz, A, Gholizadeh, P. The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J Med Microbiol 2021;70:10–109. https://doi.org/10.1099/jmm.0.001435.Search in Google Scholar PubMed

98. Sehgal, R, de Mello, VD, Männistö, V, Lindström, J, Tuomilehto, J, Pihlajamäki, J, et al.. Indole propionic acid, a gut bacteria-produced tryptophan metabolite and the risk of type 2 diabetes and non-alcoholic fatty liver disease. Nutrition 2022;14:4695. https://doi.org/10.3390/nu14214695.Search in Google Scholar PubMed PubMed Central

99. Hasain, Z, Mokhtar, NM, Kamaruddin, NA, Mohamed Ismail, NA, Razalli, NH, Gnanou, JV, et al.. Gut Microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential. Front Cell Infect Microbiol 2020;10:188. https://doi.org/10.3389/fcimb.2020.00188.Search in Google Scholar PubMed PubMed Central

100. Letchumanan, G, Abdullah, N, Marlini, M, Baharom, N, Lawley, B, Omar, MR, et al.. Gut microbiota composition in prediabetes and newly diagnosed type 2 diabetes: a systematic review of observational studies. Front Cell Infect Microbiol 2022;12:943427. https://doi.org/10.3389/fcimb.2022.943427.Search in Google Scholar PubMed PubMed Central

101. Mokkala, K, Paulin, N, Houttu, N, Koivuniemi, E, Pellonperä, O, Khan, S, et al.. Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial. Gut 2021;70:309–18. https://doi.org/10.1136/gutjnl-2020-321643.Search in Google Scholar PubMed

102. Jardon, KM, Canfora, EE, Goossens, GH, Blaak, EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 2022;71:1214–26. https://doi.org/10.1136/gutjnl-2020-323715.Search in Google Scholar PubMed PubMed Central

103. Das, S, Maiti, R, Ghosh, D. Induction of oxidative stress on reproductive and metabolic organs in sodium fluoride-treated male albino rats: protective effect of testosterone and vitamin e coadministration. Toxicol Mech Methods 2005;15:271–7. https://doi.org/10.1080/15376520590968824.Search in Google Scholar PubMed

104. Bordalo Tonucci, L, Dos Santos, KM, De Luces Fortes Ferreira, CL, Ribeiro, SM, De Oliveira, LL, Martino, HSD. Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr 2017;57:2296–309. https://doi.org/10.1080/10408398.2014.934438.Search in Google Scholar PubMed

105. Banerjee, P, Adhikary, K, Chatterjee, A, Sarkar, R, Bagchi, D, Ghosh, N, et al.. Digestion and gut microbiome. In: Bagchi, D, Ohia, S, editors. Nutrition and functional foods in boosting digestion, metabolism and immune health. United Kingdom: Academic Press; 2021:123–38 pp.10.1016/B978-0-12-821232-5.00029-XSearch in Google Scholar

106. Chowdhury, M, Chowdhury, S, Bhattacherjee, A, Roy, C, Sarkar, R, Adhikary, K, et al.. Natural antioxidants and nutraceuticals to fight against common human diseases: an overview. Eur Chem Bull 2023;12:1505–21. https://doi.org/10.48047/ecb.Search in Google Scholar

107. Adhikary, K, Chatterjee, A, Banerjee, P. An updated review on nanomaterials for biomedical advancements: concepts and applications. Biosci Biotech Res Commun 2021;14:1428–34. https://doi.org/10.21786/bbrc/14.4.9.Search in Google Scholar

108. Adhikary, K, Mohanty, S, Bandyopadhyay, B, Maiti, R, Bhattacharya, K, Karak, P. β-Amyloid peptide modulates peripheral immune responses and neuroinflammation in rats. Biomol Concepts 2024;15:20220042. https://doi.org/10.1515/bmc-2022-0042.Search in Google Scholar PubMed

109. Bhattacharya, K, Dey, R, Sen, D, Paul, N, Basak, AK, Purkait, MP, et al.. Polycystic ovary syndrome and its management: in view of oxidative stress. Biomol Concepts 2024;15. https://doi.org/10.1515/bmc-2022-0038.Search in Google Scholar PubMed

110. Mallick, S, Mandal, M, Roy, S, Pradhan, S, Mandal, S, Maiti, R, et al.. Effect of phytosterol extract from sesame seed on experimentally induced hyperlipidemic rats: dose dependent study. Int J Pharma Bio Sci 2016;7:370–7.10.22376/ijpbs/7.3.p10-19Search in Google Scholar

111. Tiwari, PN, Rehman, A, Sreedhar, C, Jahan, ZA, Kundavaram, R, Bhattacharyya, I, et al.. Development and Validation of an RP-HPLC Method for the determination of rifapentine in bulk and pharmaceutical dosage form. Eur Chem Bull 2022;12:4114–28. https://doi.org/10.48047/ecb/2023.12.7.346.Search in Google Scholar

112. Gurung, M, Li, Z, You, H, Rodrigues, R, Jump, DB, Morgun, A, et al.. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051.Search in Google Scholar PubMed PubMed Central

113. Li, SX, Guo, Y. Gut microbiome: new perspectives for type 2 diabetes prevention and treatment. World J Clin Cases 2023;11:7508–20. https://doi.org/10.12998/wjcc.v11.i31.7508.Search in Google Scholar PubMed PubMed Central

114. Li, Y, Xia, S, Jiang, X, Feng, C, Gong, S, Ma, J, et al.. Gut microbiota and diarrhea: an updated review. Front Cell Infect Microbiol 2021;15:625210. https://doi.org/10.3389/fcimb.2021.625210.Search in Google Scholar PubMed PubMed Central

115. Iatcu, CO, Steen, A, Covasa, M. Gut Microbiota and complications of type-2 diabetes. Nutrients 2021;30:166. https://doi.org/10.3390/nu14010166.Search in Google Scholar PubMed PubMed Central

116. Shurrab, NT, Arafa, E-SA. Metformin: a review of its therapeutic efficacy and adverse effects. Obes Med 2020;17:100186. https://doi.org/10.1016/j.obmed.2020.100186.Search in Google Scholar

117. Sola, D, Rossi, L, Schianca, GPC, Maffioli, P, Bigliocca, M, Mella, R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 12:840–8. https://doi.org/10.5114/aoms.2015.53304.Search in Google Scholar PubMed PubMed Central

118. Saito, T, Ohashi, K, Utoh, R, Shimizu, H, Ise, K, Suzuki, H, et al.. Reversal of diabetes by the creation of neo-islet tissues into a subcutaneous site using islet cell sheets. Transplantation 2011;92:1231–6. https://doi.org/10.1097/TP.0b013e3182375835.Search in Google Scholar PubMed

119. Oukes, T, Blauw, H, van Bon, AC, DeVries, JH, von Raesfeld, AM. Acceptance of the artificial pancreas: comparing the effect of technology readiness, product characteristics, and social influence between invited and self-selected respondents. J Diabetes Sci Technol 2019;13:899–909. https://doi.org/10.1177/1932296818823728.Search in Google Scholar PubMed PubMed Central

120. Shin, H, Jo, S, Mikos, AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–64. https://doi.org/10.1016/S0142-9612(03)00339-9.Search in Google Scholar

121. Jaén, ML, Vilà, L, Elias, I, Jimenez, V, Rodó, J, Maggioni, L, et al.. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Mol Ther Methods Clin Dev 2017;6:1–7. https://doi.org/10.1016/j.omtm.2017.03.008.Search in Google Scholar PubMed PubMed Central

122. Sheridan, SD, Surampudi, V, Rao, RR. Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cell Int 2012;2012:738910. https://doi.org/10.1155/2012/738910.Search in Google Scholar PubMed PubMed Central

123. Won, G, Choi, SI, Kang, CH, Kim, GH. Lactiplanti bacillus plantarum MG4296 and Lacticaseibacillus paracasei MG5012 Ameliorates insulin resistance in Palmitic Acid-Induced HepG2 Cells and High fat diet-induced mice. Microorganisms 2021;9:1139. https://doi.org/10.3390/microorganisms9061139.Search in Google Scholar PubMed PubMed Central

124. Zhao, S, Liu, W, Wang, J, Shi, J, Sun, Y, Wang, W, et al.. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol 2017;58:1–14. https://doi.org/10.1530/JME-16-0054.Search in Google Scholar PubMed

125. Waisundara, VY, Siu, SY, Hsu, A, Huang, D, Tan, BK. Baicalin upregulates the genetic expression of antioxidant enzymes in type-2 diabetic goto-kakizaki rats. Life Sci 2011;88:1016–25. https://doi.org/10.1016/j.lfs.2011.03.009.Search in Google Scholar PubMed

126. Tao, Y, Mao, X, Xie, Z, Ran, X, Liu, X, Wang, Y, et al.. The prevalence of type 2 diabetes and hypertension in uygur and kazak populations. Cardiovasc Toxicol 2008;8:155–9. https://doi.org/10.1007/s12012-008-9024-0.Search in Google Scholar PubMed

127. Brodmann, T, Endo, A, Gueimonde, M, Vinderola, G, Kneifel, W, de Vos, WM, et al.. Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Front Microbiol 2017;8:1725. https://doi.org/10.3389/fmicb.2017.01725.Search in Google Scholar PubMed PubMed Central

128. Huda, MN, Kim, M, Bennett, BJ. Modulating the microbiota as a therapeutic intervention for type 2 diabetes. Front Endocrinol 2021;7:12:632335. https://doi.org/10.3389/fendo.2021.632335.Search in Google Scholar PubMed PubMed Central

129. Schrezenmeir, J, de Vrese, M. Probiotics, prebiotics, and synbiotics–approaching definition. Am J Clin Nutr 2001;73:361S–4S. https://doi.org/10.1093/ajcn/73.2.361s.Search in Google Scholar PubMed

130. Markowiakśliżewska, PK, Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017;9:1021. https://doi.org/10.3390/nu9091021.Search in Google Scholar PubMed PubMed Central

131. Kechagia, M, Basoulis, D, Konstantopoulou, S, Dimitriadi, D, Gyftopoulou, K, Skarmoutsou, N, et al.. Health benefits of probiotics: a review. Int Scholar lyres Notices 2013;2013:1–7. https://doi.org/10.5402/2013/481651.Search in Google Scholar PubMed PubMed Central

132. Li, K, Zhang, L, Xue, J, Yang, X, Dong, X, Sha, L, et al.. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/dbmice. Food Funct 2019;10:1915–27. https://doi.org/10.1039/C8FO02265H.Search in Google Scholar PubMed

133. Verhoog, S, Taneri, PE, Roa Diaz, ZM, Marques-Vidal, P, Troup, JP, Bally, L, et al.. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and faecal bacterium prausnitzii: a systematic review. Nutrients 2019;11:1565. https://doi.org/10.3390/nu11071565.Search in Google Scholar PubMed PubMed Central

134. Zhang, Y, Gu, Y, Ren, H, Wang, S, Zhong, H, Zhao, X, et al.. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTEstudy). Nat Commun 2020;11:5015. https://doi.org/10.1038/s41467-020-18414-8.Search in Google Scholar PubMed PubMed Central

135. Mukherjee, T, Das, T, Basak, S, Mohanty, S, Adhikary, K, Chatterjee, P, et al.. Mucormycosis during COVID-19 era: a retrospective assessment. Infect Med 2024;100112. https://doi.org/10.1016/j.imj.2024.100112.Search in Google Scholar PubMed PubMed Central

136. Mahboobi, S, Rahimi, F, Jafarnejad, S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: AMeta-analysis of randomized controlled trials. Adv Pharmaceut Bull 2018;8:565–74. https://doi.org/10.15171/apb.2018.065.Search in Google Scholar PubMed PubMed Central

Received: 2024-03-23
Accepted: 2024-05-01
Published Online: 2024-05-16

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/jbcpp-2024-0043/html
Scroll to top button