Abstract
Electric field distributions and average electron energies are measured by an optical emission spectroscopic method to investigate streamer characteristics in a pulsed corona discharge (PCD) and a dielectric barrier discharge (DBD) in atmospheric air. In PCD, average electron energies appear to be in the range of 10 ~ 12 eV along the streamers. Time-resolved measurements show that streamers in DBD have a relatively low value of average electron energy of 9 ~ 10 eV. Enhancement of the electron energy is observed when DBD is operated in a non-uniform geometry, such as dielectric barrier with a hole.
Received: 2002-7-1
Revised: 2002-10-21
Accepted: 2002-11-27
Published Online: 2016-11-30
Published in Print: 2003-1-1
© 2016 by Walter de Gruyter Berlin/Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Preface
- Synergetic Effects of Non-thermal Plasma and Catalysts on VOCs Decomposition
- Measurements of Electron Energy by Emission Spectroscopy in Pulsed Corona and Dielectric Barrier Discharges
- Kinetics, Products and Mechanism of Destruction of Ethane in Corona Discharge
- Destruction of Isotopically Enriched Nitric Oxide, 15N18O, in Air in Corona Discharge: Direct Observation of NOx Reduction to Molecular Nitrogen
- Development of Demonstration Plant Using Non-thermal Plasma Process to Remove SO2 and NOx from Flue Gas
- Approach of the Physical and Chemical Specific Properties of Pulsed Surface Dielectric Barrier Discharges in Air at Atmospheric Pressure
- Removal of Gaseous Acetaldehyde via a Silent Discharge Reactor Packed with Al2O3 Beads
- Characteristics of Nitric Monoxide Generation Using High Frequency Silent Discharge
- Oil Cracking Characteristics by Streamer Discharge in Oil
- Development of Photocatalyst Plasma Air Cleaning Filter Used in Air Conditioner
- The Effects of Using Various Types of Pulsed Discharge Reactors for Phenol Removal in Waste Water
- Decomposition of VOC in Air Using a Streamer Corona Discharge Reactor Combined with Catalyst
- Photodegradation of VOCs and Bad Smells in a TiO2 Coated Honeycomb Monolith Reactor
- Dilute Trichloroethylene Decomposition in Air by Using Non-Thermal Plasma - Catalyst Effect
- Photocatalysed Degradation of a Herbicide Derivative, Diphenamid in Aqueous Suspension of Titanium Dioxide
- Treatment of Liquid Waste Containing Ethylenediamine Tetraaceticaxid by Advanced Oxidation Processes
Articles in the same Issue
- Preface
- Synergetic Effects of Non-thermal Plasma and Catalysts on VOCs Decomposition
- Measurements of Electron Energy by Emission Spectroscopy in Pulsed Corona and Dielectric Barrier Discharges
- Kinetics, Products and Mechanism of Destruction of Ethane in Corona Discharge
- Destruction of Isotopically Enriched Nitric Oxide, 15N18O, in Air in Corona Discharge: Direct Observation of NOx Reduction to Molecular Nitrogen
- Development of Demonstration Plant Using Non-thermal Plasma Process to Remove SO2 and NOx from Flue Gas
- Approach of the Physical and Chemical Specific Properties of Pulsed Surface Dielectric Barrier Discharges in Air at Atmospheric Pressure
- Removal of Gaseous Acetaldehyde via a Silent Discharge Reactor Packed with Al2O3 Beads
- Characteristics of Nitric Monoxide Generation Using High Frequency Silent Discharge
- Oil Cracking Characteristics by Streamer Discharge in Oil
- Development of Photocatalyst Plasma Air Cleaning Filter Used in Air Conditioner
- The Effects of Using Various Types of Pulsed Discharge Reactors for Phenol Removal in Waste Water
- Decomposition of VOC in Air Using a Streamer Corona Discharge Reactor Combined with Catalyst
- Photodegradation of VOCs and Bad Smells in a TiO2 Coated Honeycomb Monolith Reactor
- Dilute Trichloroethylene Decomposition in Air by Using Non-Thermal Plasma - Catalyst Effect
- Photocatalysed Degradation of a Herbicide Derivative, Diphenamid in Aqueous Suspension of Titanium Dioxide
- Treatment of Liquid Waste Containing Ethylenediamine Tetraaceticaxid by Advanced Oxidation Processes