Startseite Ionospheric scintillation characteristics from GPS observations over Malaysian region after the 2011 Valentine’s day solar flare
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ionospheric scintillation characteristics from GPS observations over Malaysian region after the 2011 Valentine’s day solar flare

  • Aramesh Seif und Sampad Kumar Panda ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. Dezember 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ionospheric scintillations due to plasma irregularities can severely affect the modern dynamic and technological systems whose operations rely on satellite-based navigation systems. We investigate the occurrence of ionospheric scintillation in the equatorial and low latitude region over Malaysia after the 2011 Valentine’s Day solar flare. A network of three Global Ionospheric Scintillation and Total Electron Content Monitor (GISTM) GSV4004B receivers with increasing latitudes from the magnetic equator were used to monitor ionospheric TEC, rate of change of TEC index (ROTI), and amplitude (S4) as well as phase (σ φ) scintillation indices. The results show a simultaneous sudden rise in S4 and σ φ along with a significant depletion of TEC at all three locations. However, the largest enhancement of scintillation indices accompanying a substantial TEC depletion is observed at the farthest low latitude station (UNIMAS) from the equator with values around 0.5, 0.3 rad, and 1 TECU, respectively. The corresponding values at the near-equatorial station (Langkawi; 0.4, 0.2 rad, and 3 TECU) and intermediate station (UKM; 0.45, 0.3 rad, and 5 TECU) are examined along with ROTI variations, confirming the simultaneous occurrence of kilometer-scale and sub kilometer scale irregularities during 17 and 18 February 2011. The radiation effects of the solar flare on the ionosphere were prominently recognized at the local nighttime hours (around 14:00 to 17:00 UT) coinciding with the equatorial prereversal enhancement (PRE) time to seed the equatorial plasma bubbles (EPBs) enhancement that resulted in ionospheric irregularities over the low latitudes. The significant TEC depletion seen in the signals from selected GPS satellites (PRNs 11, 19, 23, and 32) suggests plausible degradation in the performance of GPS-based services over the Malaysian region. The study provides an effective understanding of the post-flare ionospheric irregularities during an episode of minor geomagnetic storm period and aligns with the efforts for mitigating the scintillation effects in space-based radio services over low latitudes.


Corresponding author: Sampad Kumar Panda, Department of ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, Andhra Pradesh, India, E-mail:

Funding source: Iran’s National Elites Foundation (INEF) Award

Acknowledgments

The authors would like to appreciate the university Kebangsaan Malaysia for providing the ionospheric TEC and scintillation indices from the GPS stations across Malaysia and the opportunity to undertake this research work. Aramesh Seif gratefully acknowledges the Iran’s National Elites Foundation (INEF) fund that awarded to her to conduct this study. The solar and geomagnetic indices are obtained from OMNIWeb at NASA website (https://omniweb.gsfc.nasa.gov/form/dx1.html).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Arons, J. Ionospharic amplitude and phase fluctuations at the GPS frequencies. In: Proceedings of the ION GPS-1994. Salt Lake City, UT: Slat Palace Convention Center; 1994. Available from: https://cir.nii.ac.jp/crid/1573950400321535104.Suche in Google Scholar

2. Aol, S, Buchert, S, Jurua, E. Ionospheric irregularities and scintillations: a direct comparison of in situ density observations with ground-based L-band receivers. Earth Planets Space 2020;72:164. https://doi.org/10.1186/s40623-020-01294-z.Suche in Google Scholar

3. Priyadarshi, S. A review of ionospheric scintillation models. Surv Geophys 2015;36:295–324. https://doi.org/10.1007/s10712-015-9319-1.Suche in Google Scholar PubMed PubMed Central

4. Kintner, PM, Ledvina, BM, de Paula, ER. GPS and ionospheric scintillations. Space Weather 2007;5:S09003. https://doi.org/10.1029/2006SW000260.Suche in Google Scholar

5. Seok, HW, Ansari, K, Panachai, C, Jamjareegulgarn, P. Individual performance of multi-GNSS signals in the determination of STEC over Thailand with the applicability of Klobuchar model. Adv Space Res 2022;69:1301–18. https://doi.org/10.1016/j.asr.2021.11.025.Suche in Google Scholar

6. Abadi, P, Ahmad, UA, Otsuka, Y, Jamjareegulgarn, P, Martiningrum, DR, Faturahman, A, et al.. Modeling post-sunset equatorial spread-F occurrence as a function of evening upward plasma drift using logistic regression, deduced from ionosondes in Southeast Asia. Rem Sens 2022;14:1896. https://doi.org/10.3390/rs14081896.Suche in Google Scholar

7. Sarudin, I, Hamid, NSA, Abdullah, M, Buhari, SM, Shiokawa, K, Otsuka, Y, et al.. Influence of zonal wind velocity variation on equatorial plasma bubble occurrences over southeast Asia. J Geophys Res Space Phys 2021;126:e2020JA028994. https://doi.org/10.1029/2020JA028994.Suche in Google Scholar

8. Atıcı, R, Sağır, S. Global investigation of the ionospheric irregularities during the severe geomagnetic storm on September 7–8, 2017. J Geodesy Geodyn 2020;11:211–21. https://doi.org/10.1016/j.geog.2019.05.004.Suche in Google Scholar

9. Reddybattula, KD, Panda, SK, Sharma, SK, Singh, AK, Kurnala, K, Haritha, CS, et al.. Anomaly effects of 6–10 September 2017 solar flares on ionospheric total electron content over Saudi Arabian low latitudes. Acta Astronaut 2020;177:332–40. https://doi.org/10.1016/j.actaastro.2020.07.045.Suche in Google Scholar

10. Davies, K. Ionospheric radio. Institution of Engineering and Technology; 1990. Available from: https://digital-library.theiet.org/content/books/ew/pbew031e.10.1049/PBEW031ESuche in Google Scholar

11. Zhang, DH, Mo, XH, Cai, L, Zhang, W, Feng, M, Hao, YQ, et al.. Impact factor for the ionospheric total electron content response to solar flare irradiation. J Geophys Res Space Phys 2011;116:A04311. https://doi.org/10.1029/2010JA016089.Suche in Google Scholar

12. Mitra, AP. Flare radiations responsible for ionospheric effects. In: Mitra, AP, editor. Ionospheric effects of solar flares. Dordrecht: Springer Netherlands; 1974:60–85 pp.10.1007/978-94-010-2231-6_3Suche in Google Scholar

13. Mendillo, M, Evans, JV. Incoherent scatter observations of the ionospheric response to a large solar flare. Radio Sci 1974;9:197–203. https://doi.org/10.1029/RS009i002p00197.Suche in Google Scholar

14. Parmar, S, Dalal, U, Pathak, K. Analysing impact of major solar flares on ionospheric total electron content using NavIC signals. Curr Sci 2020;118:392. https://doi.org/10.18520/cs/v118/i3/392-400.Suche in Google Scholar

15. Liu, JY, Lin, CH, Tsai, HF, Liou, YA. Ionospheric solar flare effects monitored by the ground-based GPS receivers: theory and observation. J Geophys Res Space Phys 2004;109:A01307. https://doi.org/10.1029/2003JA009931.Suche in Google Scholar

16. Woods, TN, Bailey, SM, Peterson, WK, Solomon, SC, Warren, HP, Eparvier, FG, et al.. Solar extreme ultraviolet variability of the X-class flare on 21 April 2002 and the terrestrial photoelectron response. Space Weather 2003;1:1001. https://doi.org/10.1029/2003SW000010.Suche in Google Scholar

17. Ogwala, A, Oyedokun, OJ, Akala, AO, Amaechi, PO, Simi, KG, Panda, SK, et al.. Characterization of ionospheric irregularities over the equatorial and low latitude Nigeria region. Astrophys Space Sci 2022;367:79. https://doi.org/10.1007/s10509-022-04110-0.Suche in Google Scholar

18. Vankadara, RK, Panda, SK, Amory-Mazaudier, C, Fleury, R, Devanaboyina, VR, Pant, TK, et al.. Signatures of equatorial plasma bubbles and ionospheric scintillations from magnetometer and GNSS observations in the Indian longitudes during the space weather events of early September 2017. Rem Sens 2022;14:652. https://doi.org/10.3390/rs14030652.Suche in Google Scholar

19. Afraimovich, EL. GPS global detection of the ionospheric response to solar flares. Radio Sci 2000;35:1417–24. https://doi.org/10.1029/2000RS002340.Suche in Google Scholar

20. Thome, GD, Wagner, LS. Electron density enhancements in the E and F regions of the ionosphere during solar flares. J Geophys Res 1971;76:6883–95. https://doi.org/10.1029/JA076i028p06883.Suche in Google Scholar

21. Xiong, B, Wan, W, Liu, L, Withers, P, Zhao, B, Ning, B, et al.. Ionospheric response to the X-class solar flare on 7 September 2005. J Geophys Res Space Phys 2011;116:A11317. https://doi.org/10.1029/2011JA016961.Suche in Google Scholar

22. Singh, AK, Panda, SK, Das, RM. Comparison of polar ionospheric behavior at Arctic and Antarctic regions for improved satellite-based positioning. J Appl Geodes 2021;15:269–77. https://doi.org/10.1515/jag-2021-003.Suche in Google Scholar

23. Zhang, DH, Xiao, Z. Study of the ionospheric total electron content response to the great flare on 15 April 2001 using the international GPS service network for the whole sunlit hemisphere. J Geophys Res Space Phys 2003;108:1330. https://doi.org/10.1029/2002JA009822.Suche in Google Scholar

24. Afraimovich, EL, Altyntsev, AT, Kosogorov, EA, Larina, NS, Leonovich, LA. Ionospheric effects of the solar flares of September 23, 1998 and July 29, 1999 as deduced from global GPS network data. J Atmos Sol Terr Phys 2001;63:1841–9. https://doi.org/10.1016/S1364-6826(01)00060-8.Suche in Google Scholar

25. Berdermann, J, Kriegel, M, Banyś, D, Heymann, F, Hoque, MM, Wilken, V, et al.. Ionospheric response to the X9.3 flare on 6 september 2017 and its implication for navigation services over Europe. Space Weather 2018;16:1604–15. https://doi.org/10.1029/2018SW001933.Suche in Google Scholar

26. Priyadarshi, S, Zhang, QH, Ma, YZ, Wang, Y, Xing, ZY. Observations and modeling of ionospheric scintillations at South Pole during six X-class solar flares in 2013. J Geophys Res Space Phys 2016;121:5737–51. https://doi.org/10.1002/2016JA022833.Suche in Google Scholar

27. Ackah, JB, Obrou, OK, Ahoua, SM. Study of the ionospheric effects of selected cases of solar flares over Abidjan. J Phys Sci Appl 2018;8:18–25.10.17265/2159-5348/2018.03.003Suche in Google Scholar

28. Xia, G, Zhang, F, Wang, C, Zhou, C. ED-ConvLSTM: a novel global ionospheric total electron content medium-term forecast model. Space Weather 2022;20:e2021SW002959. https://doi.org/10.1029/2021SW002959.Suche in Google Scholar

29. Feltens, J, Angling, M, Jackson-Booth, N, Jakowski, N, Hoque, M, Hernández-Pajares, M, et al.. Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 2011;46:RS0D12. https://doi.org/10.1029/2010RS004584.Suche in Google Scholar

30. Liu, L, Zou, S, Yao, Y, Wang, Z. Forecasting global ionospheric TEC using deep learning approach. Space Weather 2020;18:e2020SW002501. https://doi.org/10.1029/2020SW002501.Suche in Google Scholar

31. Dabbakuti, JRKK, Lahari, GB. Application of singular spectrum analysis using artificial neural networks in TEC predictions for ionospheric space weather. IEEE J Sel Top Appl Earth Obs Rem Sens 2019;12:5101–7. https://doi.org/10.1109/JSTARS.2019.2956968.Suche in Google Scholar

32. Kaselimi, M, Voulodimos, A, Doulamis, N, Doulamis, A, Delikaraoglou, D. Deep recurrent neural networks for ionospheric variations estimation using GNSS measurements. IEEE Trans Geosci Rem Sens 2022;60:1–15. https://doi.org/10.1109/TGRS.2021.3090856.Suche in Google Scholar

33. Grzesiak, M, Cesaroni, C, Spogli, L, De Franceschi, G, Romano, V. Regional short-term forecasting of ionospheric TEC and scintillation. Radio Sci 2018;53:1254–68. https://doi.org/10.1029/2017RS006310.Suche in Google Scholar

34. Reddybattula, KD, Nelapudi, LS, Moses, M, Devanaboyina, VR, Ali, MA, Jamjareegulgarn, P, et al.. Ionospheric TEC forecasting over an Indian low latitude location using long short-term memory (LSTM) deep learning network. Universe 2022;8:562. https://doi.org/10.3390/universe8110562.Suche in Google Scholar

35. Srivani, I, Prasad, GSV, Ratnam, DV. A deep learning-based approach to forecast ionospheric delays for GPS signals. Geosci Rem Sens Lett IEEE 2019;16:1180–4. https://doi.org/10.1109/LGRS.2019.2895112.Suche in Google Scholar

36. Dabbakuti, JRKK, Peesapati, R, Yarrakula, M, Anumandla, KK, Madduri, SV. Implementation of storm-time ionospheric forecasting algorithm using SSA–ANN model. IET Radar, Sonar Navig 2020;14:1249–55. https://doi.org/10.1049/iet-rsn.2019.0551.Suche in Google Scholar

37. Neeli, R, Dabbakuti, JRKK, Chowdhary, VR, Tripathi, NK, Devanaboyina, VR. Modeling of local ionospheric time varying characteristics based on singular value decomposition over low-latitude GPS stations. Astrophys Space Sci 2018;363:182. https://doi.org/10.1007/s10509-018-3403-1.Suche in Google Scholar

38. Prikryl, P, Jayachandran, PT, Mushini, SC, Richardson, IG. Toward the probabilistic forecasting of high-latitude GPS phase scintillation. Space Weather 2012;10:S08005. https://doi.org/10.1029/2012SW000800.Suche in Google Scholar

39. Anderson, DN, Reinisch, B, Valladare, C, Chau, J, Veliz, O. Forecasting the occurrence of ionospheric scintillation activity in the equatorial ionosphere on a day-to-day basis. J Atmos Sol Terr Phys 2004;66:1567–72. https://doi.org/10.1016/j.jastp.2004.07.010.Suche in Google Scholar

40. Vasylyev, D, Béniguel, Y, Volker, W, Kriegel, M, Berdermann, J. Modeling of ionospheric scintillation. J Space Weather Space Clim 2022;12:22. https://doi.org/10.1051/swsc/2022016.Suche in Google Scholar

41. Darya, AM, Al-Owais, AA, Shaikh, MM, Fernini, I. Amplitude scintillation forecasting using bagged trees. In: IGARSS 2022 – 2022 IEEE international geoscience and remote sensing symposium; 2022:2275–8 pp.10.1109/IGARSS46834.2022.9883380Suche in Google Scholar

42. Sridhar, M, Ratnam, DV, Raju, KP, Praharsha, DS, Saathvika, K. Ionospheric scintillation forecasting model based on NN-PSO technique. Astrophys Space Sci 2017;362:166. https://doi.org/10.1007/s10509-017-3144-6.Suche in Google Scholar

43. Carvalho, O, Alves, PAADSDAN, Cueva, RYDLC, Filho, AOB. Nowcasting of amplitude ionospheric scintillation based on machine learning techniques. IEEE Trans Aero Electron Syst 2022;2022:1–12. https://doi.org/10.1109/TAES.2022.3188741.Suche in Google Scholar

44. Panda, SK, Gedam, SS, Rajaram, G, Sripathi, S, Pant, TK, Das, RM. A multi-technique study of the 29–31 October 2003 geomagnetic storm effect on low latitude ionosphere over Indian region with magnetometer, ionosonde, and GPS observations. Astrophys Space Sci 2014;354:267–74. https://doi.org/10.1007/s10509-014-2092-7.Suche in Google Scholar

45. Sharma, SK, Singh, AK, Panda, SK, Ahmed, SS. The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: a focus on St. Patrick’s day storm. Astrophys Space Sci 2020;365:35. https://doi.org/10.1007/s10509-020-3747-1.Suche in Google Scholar

46. Jenan, R, Dammalage, TL, Panda, SK. Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region. Acta Astronaut 2021;180:575–87. https://doi.org/10.1016/j.actaastro.2021.01.006.Suche in Google Scholar

47. Amaechi, PO, Oyeyemi, EO, Akala, AO, Messanga, HE, Panda, SK, Seemala, GK, et al.. Ground-based GNSS and C/NOFS observations of ionospheric irregularities over Africa: a case study of the 2013 St. Patrick’s day geomagnetic storm. Space Weather 2021;19:e2020SW002631. https://doi.org/10.1029/2020SW002631.Suche in Google Scholar

48. Seif, A, Abdullah, M, Hasbi, AM, Zou, Y. Investigation of ionospheric scintillation at UKM station, Malaysia during low solar activity. Acta Astronaut 2012;81:92–101. https://doi.org/10.1016/j.actaastro.2012.06.024.Suche in Google Scholar

49. Seif, A, Abdullah, M, Hasbi, AM, Zou, Y. Observation of GPS ionospheric scintillation at UKM, Malaysia. In: Proceeding of the 2011 IEEE international conference on space science and communication (IconSpace); 2011:45–50 pp.10.1109/IConSpace.2011.6015849Suche in Google Scholar

50. Klobuchar, JA. Design and characteristics of the GPS ionospheric time delay algorithm for single frequency users. In: PLANS’86-Position Location and Navigation Symposium. 1986:280–6 pp.Suche in Google Scholar

51. Schaer, S. Société helvétique des sciences naturelles. Commission géodésique, Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Zürich, Switzerland: Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich; 1999, vol 59.Suche in Google Scholar

52. Warnant, R, Pottiaux, E. The increase of the ionospheric activity as measured by GPS. Earth Planets Space 2000;52:1055–60. https://doi.org/10.1186/BF03352330.Suche in Google Scholar

53. Pi, X, Mannucci, AJ, Lindqwister, UJ, Ho, CM. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 1997;24:2283–6. https://doi.org/10.1029/97GL02273.Suche in Google Scholar

54. Basu, S, Groves, KM, Quinn, JM, Doherty, P. A comparison of TEC fluctuations and scintillations at ascension island. J Atmos Sol Terr Phys 1999;61:1219–26. https://doi.org/10.1016/S1364-6826(99)00052-8.Suche in Google Scholar

55. Adebesin, BO. Investigation into the linear relationship between the AE, Dst and ap indices during different magnetic and solar activity conditions. Acta Geod Geophys 2016;51:315–31. https://doi.org/10.1007/s40328-015-0128-2.Suche in Google Scholar

56. Otsuka, Y. Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere. Prog Earth Planet Sci 2018;5:57. https://doi.org/10.1186/s40645-018-0212-7.Suche in Google Scholar

57. Abadi, P, Otsuka, Y, Tsugawa, T. Effects of pre-reversal enhancement of E × B drift on the latitudinal extension of plasma bubble in Southeast Asia. Earth Planets Space 2015;67:74. https://doi.org/10.1186/s40623-015-0246-7.Suche in Google Scholar

58. Abdu, MA. Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F. J Atmos Sol Terr Phys 2001;63:869–84. https://doi.org/10.1016/S1364-6826(00)00201-7.Suche in Google Scholar

59. Belakhovsky, VB, Jin, Y, Miloch, WJ. Influence of different types of ionospheric disturbances on GPS signals at polar latitudes. Ann Geophys 2021;39:687–700. https://doi.org/10.5194/angeo-39-687-2021.Suche in Google Scholar

60. Basu, S, Groves, KM, Basu, S, Sultan, PJ. Specification and forecasting of scintillations in communication/navigation links: current status and future plans. J Atmos Sol Terr Phys 2002;64:1745–54. https://doi.org/10.1016/S1364-6826(02)00124-4.Suche in Google Scholar

61. Sahithi, K, Sridhar, M, Kotamraju, SK, Kavya, KCS, Sivavaraprasad, G, Ratnam, DV, et al.. Characteristics of ionospheric scintillation climatology over Indian low-latitude region during the 24th solar maximum period. J Geodesy Geodyn 2019;10:110–7. https://doi.org/10.1016/j.geog.2018.11.006.Suche in Google Scholar

62. Prikryl, P, Jayachandran, PT, Mushini, SC, Chadwick, R. Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions. Ann Geophys 2011;29:377–92. https://doi.org/10.5194/angeo-29-377-2011.Suche in Google Scholar

63. Jiao, Y, Hall, JJ, Morton, YT. Performance evaluation of an automatic GPS ionospheric phase scintillation detector using a machine-learning algorithm. Navigation 2017;64:391–402. https://doi.org/10.1002/navi.188.Suche in Google Scholar

Received: 2022-11-09
Accepted: 2022-11-17
Published Online: 2022-12-05
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2022-0053/html
Button zum nach oben scrollen