Startseite Accuracy assessment of available airborne gravity data in the central western desert of Egypt
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Accuracy assessment of available airborne gravity data in the central western desert of Egypt

  • Ahmed Zaki EMAIL logo , Ebtehal Younes , Osama El Ghrabawy , Islam Hassan Azab und Mostafa Rabah
Veröffentlicht/Copyright: 4. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the current study, the accuracy of airborne gravity data is evaluated based on the most recent Global Geopotential Models (GGM) and terrestrial gravity data to find out to what extent these data are acceptable to be used in multi-applications (e. g., geodesy and geophysics). To achieve this goal, the remove-compute-restore (RCR) scheme, upward, and downward continuation operational methods (least square collocation and fast Fourier transform procedures) are applied. The airborne gravity data had been acquired by the Egyptian Nuclear Material Authority (ENMA) in the central-western desert for geological applications. Firstly, three GGMs models (EGM2008, EIGEN-6C4 and XGM2019e up to various degrees) are used to compare with the free-air airborne gravity anomaly, The EGM2008 model up to degree 720 produces the smallest mean and STD difference values with 2.59 and 3.07 mGal, respectively. The terrestrial gravity data are compared with the airborne gravity anomaly at both flight and ground levels. In-flight level, the terrestrial gravity data are upward continued to the flight level and compared with the airborne gravity anomaly. The statistical results show that the mean and STD differences are about 4.2 and 0.75 mGal, respectively. While in-ground level evaluation, two operational techniques are used to downward continue the airborne gravity data (Fast Fourier Transform (FFT) and Least Squares Collocation (LSC)). The combined Satellite model EGM2008 up to degree 720 and SRTM 30 m are used to remove and restore the long and short-wavelength information. It is observed that the collocation gives better statistical results than FFT with mean and STD difference values are about 3.13 and 1.13 and mGal, respectively.

References

[1] B. Hofmann-Wellenhof and H. Moritz, Physical Geodesy. Springer Science and Business Media, 2006.Suche in Google Scholar

[2] W. Torge and J. Müller, Geodesy. Walter de Gruyter, 2012.10.1515/9783110250008Suche in Google Scholar

[3] F. Sansò and M. G. Sideris, Geoid determination: theory and methods. Springer Science and Business Media, 2013.10.1007/978-3-540-74700-0Suche in Google Scholar

[4] A. Zaki and S. Mogren, A high-resolution gravimetric geoid model for Kingdom of Saudi Arabia, Surv. Rev., pp. 1–16, 2021, doi: 10.1080/00396265.2021.1944544.Suche in Google Scholar

[5] M. R. Kaloop, A. Zaki, H. Al-Ajami, and M. Rabah, Optimizing local geoid Undulation model using GPS/levelling measurements and heuristic regression approaches, Surv. Rev., vol. 52, no. 375, pp. 544–554, 2020.10.1080/00396265.2019.1665615Suche in Google Scholar

[6] A. Zaki, Assessment of GOCE models in Egypt, Master Thesis, Faculty of engineering, Cairo university, Egypt, 2015.Suche in Google Scholar

[7] C. Braitenberg et al., Gravity for detecting caves: airborne and terrestrial simulations based on a comprehensive karstic cave benchmark, Pure Appl. Geophys., vol. 173, no. 4, pp. 1243–1264, 2016.10.1007/s00024-015-1182-ySuche in Google Scholar

[8] A. Zaki, A. H. Mansi, M. Selim, M. Rabah, and G. El-Fiky, Comparison of satellite altimetric gravity and global geopotential models with shipborne gravity in the red sea, Mar. Geod., vol. 41, no. 3, pp. 258–269, 2018.10.1080/01490419.2017.1414088Suche in Google Scholar

[9] M. El-Ashquer, H. Al-Ajami, A. Zaki, and M. Rabah, Study on the selection of optimal global geopotential models for geoid determination in Kuwait, Surv. Rev., vol. 52, no. 373, pp. 373–382, 2020.10.1080/00396265.2019.1611256Suche in Google Scholar

[10] A. Zaki, A. H. Mansi, M. Rabah, and G. El-Fiky, Validation of recently released GOCE-based satellite-only global geopotential models over the Red Sea using shipborne gravity data, BGTA-Bollettino di Geofis. Teor. ed Appl., 2018.Suche in Google Scholar

[11] M. Abdallah, R. Abd El Ghany, M. Rabah, and A. Zaki, Assessments of recently released global geopotential models along the Red Sea with shipborne gravity data, Egypt. J. Remote Sens. Sp. Sci., vol. 25, no. 1, pp. 125–133, 2022, doi: 10.1016/j.ejrs.2022.01.005.Suche in Google Scholar

[12] M. Abdallah, R. Abd El Ghany, M. Rabah, and A. Zaki, Comparison of recently released satellite altimetric gravity models with shipborne gravity over the Red Sea, Egypt. J. Remote Sens. Sp. Sci., 2022.10.1016/j.ejrs.2022.03.016Suche in Google Scholar

[13] G. M. Dawod, H. F. Mohamed, and S. S. Ismail, Evaluation and adaptation of the EGM2008 geopotential model along the Northern Nile Valley, Egypt: Case study, J. Surv. Eng., vol. 136, no. 1, pp. 36–40, 2010.10.1061/(ASCE)SU.1943-5428.0000002Suche in Google Scholar

[14] Y. Huang, A. V. Olesen, M. Wu, and K. Zhang, SGA-WZ: A new strapdown airborne gravimeter, Sensors, vol. 12, no. 7, pp. 9336–9348, 2012.10.3390/s120709336Suche in Google Scholar PubMed PubMed Central

[15] A. H. Mansi, M. Capponi, and D. Sampietro, Downward continuation of airborne gravity data by means of the change of boundary approach, Pure Appl. Geophys., vol. 175, no. 3, pp. 977–988, 2018.10.1007/s00024-017-1717-5Suche in Google Scholar

[16] M. Klingele, M. E. Halliday, and G. Kahleh, The Airborne Gravimetric Survey of Switzerland, 1995.10.3997/2214-4609-pdb.313.70Suche in Google Scholar

[17] J. M. Brozena, The Greenland Aerogeophysics Project: Airborne Gravity, Topographic and Magnetic Mapping of an Entire Continent, in Colombo, O. L. (ed.) From Mars to Greenland: Charting Gravity With Space and Airborne Instruments, 1992, pp. 203–214.10.1007/978-1-4613-9255-2_19Suche in Google Scholar

[18] R. Forsberg, A. Olesen, D. Munkhtsetseg, and B. Amarzaya, Downward continuation and geoid determination in Mongolia from airborne and surface gravimetry and SRTM topography, in 2007 International Forum on Strategic Technology, 2007, pp. 470–475.10.1109/IFOST.2007.4798634Suche in Google Scholar

[19] C. Hwang et al., Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment, J. Geophys. Res. Solid Earth, vol. 112, no. B4, 2007.10.1029/2005JB004220Suche in Google Scholar

[20] C. Jekeli, H. J. Yang, and J. H. Kwon, Geoid determination in South Korea from a combination of terrestrial and airborne gravity anomaly data, J. Korean Soc. Surv. Geod. Photogramm. Cartogr., vol. 31, no. 6_2, pp. 567–576, 2013.10.7848/ksgpc.2013.31.6-2.567Suche in Google Scholar

[21] R. Forsberg, A. V. Olesen, R. Gatchalian, and C. C. C. Ortiz, Geoid model of the Philippines from airborne and surface gravity, Natl. Mapp. Resour. Inf. Auth., 2014.Suche in Google Scholar

[22] M. Bates, S. Elieff, K. Kaski, D. Howard, J. Brett, and R. Lane, Regional airborne gravity surveys in Western Australia: Considerations for the end user, ASEG Ext. Abstr., vol. 2019, no. 1, pp. 1–5, 2019.10.1080/22020586.2019.12072976Suche in Google Scholar

[23] J. C. McCubbine et al., The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry, J. Geod., vol. 92, no. 8, pp. 923–937, 2018.10.1007/s00190-017-1103-1Suche in Google Scholar

[24] M. Varga, M. Pitoňák, P. Novák, and T. Bašić, Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA, J. Geod., vol. 95, no. 5, pp. 1–23, 2021.10.1007/s00190-021-01494-9Suche in Google Scholar

[25] V. N. Berzhitsky et al., GT-1A inertial gravimeter system: results of flight tests, Lomonosov Moscow State Univ. Fac. Mech. Math. Moscow, Russ., 2002.Suche in Google Scholar

[26] A. Jarvis, H. I. Reuter, A. Nelson, and E. Guevara, Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database, 2008.Suche in Google Scholar

[27] R. Forsberg, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, Ohio State University. Dept of Geodetic Science and Surveying. Report No. OSU/DGSS-355, 1984.10.21236/ADA150788Suche in Google Scholar

[28] K. P. Schwarz, Data types and their spectral properties, Local gravity F. Approx. Beijing Int. Geoid Determ. Summer Sch., 1984.Suche in Google Scholar

[29] N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor, An Earth gravitational model to degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18 2008. 2008.10.1190/1.3063757Suche in Google Scholar

[30] F. G. Lemoine, N. K. Pavlis, S. C. Kenyon, R. H. Rapp, E. C. Pavlis, and B. F. Chao, New high-resolution model developed for earth’s gravitational field, Eos (Washington. DC.), vol. 79, no. 9, 1998, doi: 10.1029/98eo00076.Suche in Google Scholar

[31] G. JPL, Gravity Recovery and Climate Experiment—Science and Mission Requirements Document, rev. A, JPLD-15928. NASA’s Earth Syst. Sci. Pathfind. Progr., pp. 1–84, 1998.Suche in Google Scholar

[32] C. Förste et al., R. Biancale, 2014, EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, in EGU General Assembly Conference Abstracts, 2015, vol. 16.Suche in Google Scholar

[33] S. Bruinsma, J.-M. Lemoine, R. Biancale, and N. Valès, CNES/GRGS 10-day gravity field models (release 2) and their evaluation, Adv. Sp. Res., vol. 45, no. 4, pp. 587–601, 2010, doi: 10.1016/j.asr.2009.10.012.Suche in Google Scholar

[34] R. Pail et al., First GOCE gravity field models derived by three different approaches, J. Geod., vol. 85, no. 11, pp. 819–843, 2011, doi: 10.1007/s00190-011-0467-x.Suche in Google Scholar

[35] P. Zingerle, R. Pail, T. Gruber, and X. Oikonomidou, The combined global gravity field model XGM2019e, J. Geod., vol. 94, no. 7, p. 66, 2020, doi: 10.1007/s00190-020-01398-0.Suche in Google Scholar

[36] A. Kvas et al., The combined satellite-only gravity field model GOCO06s, 2019.Suche in Google Scholar

[37] R. Pail et al., Short note: the experimental geopotential model XGM2016, J. Geod., vol. 92, no. 4, pp. 443–451, 2018.10.1007/s00190-017-1070-6Suche in Google Scholar

[38] M. Rexer, C. Hirt, and R. Pail, High-resolution global forward modelling: a degree-5480 global ellipsoidal topographic potential model, EGUGA, p. 7725, 2017.Suche in Google Scholar

[39] O. Andersen, P. Knudsen, and L. Stenseng, The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry, vol. 144. Springer, 2016.10.1007/1345_2015_182Suche in Google Scholar

[40] B. H. Jacobsen, A case for upward continuation as a standard separation filter for potential-field maps, Geophysics, vol. 52, no. 8, pp. 1138–1148, 1987, doi: 10.1190/1.1442378.Suche in Google Scholar

[41] T. Bláha, M. Hirsch, W. Keller, and M. Scheinert, Application of a spherical FFT approach in airborne gravimetry, J. Geod., vol. 70, no. 11, pp. 663–672, 1996, doi: 10.1007/BF00867145.Suche in Google Scholar

[42] B. Buttkus, Filtering in the Frequency Domain, in Spectral Analysis and Filter Theory in Applied Geophysics, Springer, 2000, pp. 325–343.10.1007/978-3-642-57016-2_15Suche in Google Scholar

[43] M. G. Sideris, Fourier geoid determination with irregular data, J. Geod., vol. 70, no. 1, pp. 2–12, 1995.10.1007/BF00863415Suche in Google Scholar

[44] B. Alberts and R. Klees, A comparison of methods for the inversion of airborne gravity data, J. Geod., vol. 78, no. 1–2, pp. 55–65, 2004, doi: 10.1007/s00190-003-0366-x.Suche in Google Scholar

[45] C. C. Tscherning, A Fortran IV Program for the Determination of the Anomalous Potential Using Stepwise Least Squares Collocation, no. 2, p. 130, 1974.Suche in Google Scholar

[46] R. Forsberg, A new covariance model for inertial gravimetry and gradiometry, Journal of Geophysical Research, vol. 92, no. B2, pp. 1305–1310, 1987, doi: 10.1029/JB092iB02p01305.Suche in Google Scholar

[47] R. Forsberg and C. Tscherning, An overview manual for the GRAVSOFT geodetic gravity field modelling programs, Contract Rep. JUPEM, September, pp. 1–59, 2008.Suche in Google Scholar

[48] Y. S. Hsiao and C. Hwang, Topography-assisted downward continuation of airborne gravity: An application for geoid determination in Taiwan, Terr. Atmos. Ocean. Sci., vol. 21, no. 4, pp. 627–637, 2010, doi: 10.3319/TAO.2009.07.09.01(T).Suche in Google Scholar

Received: 2021-11-25
Accepted: 2022-05-06
Published Online: 2022-06-04
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2021-0066/html
Button zum nach oben scrollen