Startseite Global existence and exponential decay for a viscoelastic equation with not necessarily decreasing kernel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Global existence and exponential decay for a viscoelastic equation with not necessarily decreasing kernel

  • Draifia Alaeddine ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. Januar 2022

Abstract

In this paper, we consider the nonlinear viscoelastic equation

u t t - Δ u + 0 t h ( t - s ) Δ u ( s ) 𝑑 s + a ( x ) | u t | m u t + | u | γ u = 0

in a bounded domain with kernels not necessarily exponentially decaying to zero and we obtain an asymptotic stability result of global solutions.

MSC 2010: 35L35; 35L20

References

[1] S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations 2004 (2004), Paper No. 88. Suche in Google Scholar

[2] N. Boumaza and S. Boulaaras, General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel, Math. Methods Appl. Sci. 41 (2018), no. 16, 6050–6069. 10.1002/mma.5117Suche in Google Scholar

[3] M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal. 68 (2008), no. 1, 177–193. 10.1016/j.na.2006.10.040Suche in Google Scholar

[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential Integral Equations 14 (2001), no. 1, 85–116. 10.57262/die/1356123377Suche in Google Scholar

[5] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations 2002 (2002), Paper No. 44. Suche in Google Scholar

[6] M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42 (2003), no. 4, 1310–1324. 10.1137/S0363012902408010Suche in Google Scholar

[7] W. Liu, Exponential or polynomial decay of solutions to a viscoelastic equation with nonlinear localized damping, J. Appl. Math. Comput. 32 (2010), no. 1, 59–68. 10.1007/s12190-009-0232-ySuche in Google Scholar

[8] M. Medjden and N.-E. Tatar, Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel, Appl. Math. Comput. 167 (2005), no. 2, 1221–1235. 10.1016/j.amc.2004.08.035Suche in Google Scholar

[9] F. Mesloub and S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput. 58 (2018), no. 1–2, 647–665. 10.1007/s12190-017-1161-9Suche in Google Scholar

[10] A. Zarai, A. Draifia and S. Boulaaras, Blow-up of solutions for a system of nonlocal singular viscoelastic equations, Appl. Anal. 97 (2018), no. 13, 2231–2245. 10.1080/00036811.2017.1359564Suche in Google Scholar

Received: 2020-03-04
Accepted: 2021-01-18
Published Online: 2022-01-28
Published in Print: 2022-12-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2075/html
Button zum nach oben scrollen