Startseite Pexider type equation on a region
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pexider type equation on a region

  • Małgorzata Chudziak EMAIL logo und Barbara Sobek
Veröffentlicht/Copyright: 23. November 2017

Abstract

We consider the problem of existence and uniqueness of extensions for the solutions of the Pexider type equation f(x+y)=g(x)+h(y)+k(x)l(y) for (x,y)D, where X is a normed space and D is a nonempty open and connected subset of X2.

MSC 2010: 39B52; 39B82

References

[1] A. E. Abbas, Invariant utility functions and certain equivalent transformations, Decis. Anal. 4 (2007), 17–31. 10.1287/deca.1060.0083Suche in Google Scholar

[2] A. E. Abbas and J. Aczél, The role of some functional equations in decision analysis, Decis. Anal. 7 (2010), 215–228. 10.1287/deca.1100.0177Suche in Google Scholar

[3] A. E. Abbas, J. Aczél and J. Chudziak, Invariance of multiattribute utility functions under shift transformations, Results Math. 54 (2009), 1–13. 10.1007/s00025-007-0266-0Suche in Google Scholar

[4] J. Aczél, Extension of a generalized Pexider equation, Proc. Amer. Math. Soc. 133 (2005), 3227–3233. 10.1090/S0002-9939-05-08039-1Suche in Google Scholar

[5] J. Aczél, Utility of extension of functional equations – when possible, J. Math. Psych. 49 (2005), 445–449. 10.1016/j.jmp.2005.05.002Suche in Google Scholar

[6] J. Chudziak and J. Tabor, Generalized Pexider equation on a restricted domain, J. Math. Psych. 52 (2008), 389–392. 10.1016/j.jmp.2008.04.002Suche in Google Scholar

[7] M. Chudziak and B. Sobek, Generalized Pexider equation on an open domain, Results Math. 71 (2017), 1359–1372. 10.1007/s00025-016-0573-4Suche in Google Scholar

[8] J. K. Chung, B. R. Ebanks, C. T. Ng and P. K. Sahoo, On a quadratic-trigonometric functional equation and some applications, Trans. Amer. Math. Soc. 347 (1995), 1131–1161. 10.1090/S0002-9947-1995-1290715-0Suche in Google Scholar

[9] G. L. Forti and L. Paganoni, Ω-additive functions on topological groups, Constantin Caratheodory: An International Tribute. Vol. I, II, World Scientific, Teaneck (1991), 312–330. 10.1142/9789814350921_0017Suche in Google Scholar

[10] P. Kannappan and P. K. Sahoo, On generalizations of the Pompeiu functional equation, Int. J. Math. Math. Sci. 21 (1998), 117–124. 10.1155/S0161171298000155Suche in Google Scholar

[11] S. H. Lee and K-W. Jun, On a generalized Pompeiu functional equation, Aequationes Math. 62 (2001), 201–210. 10.1007/PL00000148Suche in Google Scholar

[12] F. Radó and J. A. Baker, Pexider’s equation and aggregation of allocations, Aequationes Math. 32 (1987), 227–239. 10.1007/BF02311311Suche in Google Scholar

Received: 2016-12-31
Revised: 2017-10-4
Accepted: 2017-10-18
Published Online: 2017-11-23
Published in Print: 2017-12-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2017-0014/html
Button zum nach oben scrollen