Abstract
We consider the problem of existence and uniqueness of
extensions for the solutions of the Pexider type equation
References
[1] A. E. Abbas, Invariant utility functions and certain equivalent transformations, Decis. Anal. 4 (2007), 17–31. 10.1287/deca.1060.0083Suche in Google Scholar
[2] A. E. Abbas and J. Aczél, The role of some functional equations in decision analysis, Decis. Anal. 7 (2010), 215–228. 10.1287/deca.1100.0177Suche in Google Scholar
[3] A. E. Abbas, J. Aczél and J. Chudziak, Invariance of multiattribute utility functions under shift transformations, Results Math. 54 (2009), 1–13. 10.1007/s00025-007-0266-0Suche in Google Scholar
[4] J. Aczél, Extension of a generalized Pexider equation, Proc. Amer. Math. Soc. 133 (2005), 3227–3233. 10.1090/S0002-9939-05-08039-1Suche in Google Scholar
[5] J. Aczél, Utility of extension of functional equations – when possible, J. Math. Psych. 49 (2005), 445–449. 10.1016/j.jmp.2005.05.002Suche in Google Scholar
[6] J. Chudziak and J. Tabor, Generalized Pexider equation on a restricted domain, J. Math. Psych. 52 (2008), 389–392. 10.1016/j.jmp.2008.04.002Suche in Google Scholar
[7] M. Chudziak and B. Sobek, Generalized Pexider equation on an open domain, Results Math. 71 (2017), 1359–1372. 10.1007/s00025-016-0573-4Suche in Google Scholar
[8] J. K. Chung, B. R. Ebanks, C. T. Ng and P. K. Sahoo, On a quadratic-trigonometric functional equation and some applications, Trans. Amer. Math. Soc. 347 (1995), 1131–1161. 10.1090/S0002-9947-1995-1290715-0Suche in Google Scholar
[9] G. L. Forti and L. Paganoni, Ω-additive functions on topological groups, Constantin Caratheodory: An International Tribute. Vol. I, II, World Scientific, Teaneck (1991), 312–330. 10.1142/9789814350921_0017Suche in Google Scholar
[10] P. Kannappan and P. K. Sahoo, On generalizations of the Pompeiu functional equation, Int. J. Math. Math. Sci. 21 (1998), 117–124. 10.1155/S0161171298000155Suche in Google Scholar
[11] S. H. Lee and K-W. Jun, On a generalized Pompeiu functional equation, Aequationes Math. 62 (2001), 201–210. 10.1007/PL00000148Suche in Google Scholar
[12] F. Radó and J. A. Baker, Pexider’s equation and aggregation of allocations, Aequationes Math. 32 (1987), 227–239. 10.1007/BF02311311Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dynamics of typical Baire-1 functions on the interval
- On the generalized quotient integrals on homogeneous spaces
- An integral expression for the Dunkl kernel in the dihedral setting
- Takagi function revisited
- On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires
- Pexider type equation on a region
- Anti-periodic solutions for a higher order difference equation with p-Laplacian
- Portfolio immunization under cone restrictions
- The Lagrange multiplier and the stationary Stokes equations
- Numerical methods for solving the first-kind boundary value problem for a linear second-order differential equation with a deviating argument
Artikel in diesem Heft
- Frontmatter
- Dynamics of typical Baire-1 functions on the interval
- On the generalized quotient integrals on homogeneous spaces
- An integral expression for the Dunkl kernel in the dihedral setting
- Takagi function revisited
- On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires
- Pexider type equation on a region
- Anti-periodic solutions for a higher order difference equation with p-Laplacian
- Portfolio immunization under cone restrictions
- The Lagrange multiplier and the stationary Stokes equations
- Numerical methods for solving the first-kind boundary value problem for a linear second-order differential equation with a deviating argument