Startseite An integral expression for the Dunkl kernel in the dihedral setting
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An integral expression for the Dunkl kernel in the dihedral setting

  • Mostafa Maslouhi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. November 2017

Abstract

Using the results in [12] where a construction of the Dunkl intertwining operator for a large set of regular parameter functions is provided, we establish an integral expression for the Dunkl kernel in the context of the dihedral group 𝒟n with constant parameter function k and arbitrary order n2. Our main tool is a differential system that leads to the explicit expression of the Dunkl kernel whenever an appropriate solution of it is obtained. In particular, an explicit expression of the Dunkl kernel Ek(x,y) is given when one of its argument x or y is invariant under the action of any reflection in the dihedral group. We obtain also a generating series for the homogeneous components Km(x,y), m+, of the Dunkl kernel and provide new sharp estimates for the Dunkl kernel in the large context k, n2 and -2nk1,2,3,.

Acknowledgements

The author would like to thank the referee for his pertinent remarks and suggestions which have served to improve the content and the form of this manuscript.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1966. 10.1063/1.3047921Suche in Google Scholar

[2] M. de Jeu, Paley–Wiener theorems for the Dunkl transform, Trans. Amer. Math. Soc. 358 (2006), no. 10, 4225–4250. 10.1090/S0002-9947-06-03960-2Suche in Google Scholar

[3] M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147–162. 10.1007/BF01244305Suche in Google Scholar

[4] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. 10.1090/S0002-9947-1989-0951883-8Suche in Google Scholar

[5] C. F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227. 10.4153/CJM-1991-069-8Suche in Google Scholar

[6] C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa 1991), Contemp. Math. 138, American Mathematical Society, Providence (1992), 123–138. 10.1090/conm/138/1199124Suche in Google Scholar

[7] C. F. Dunkl, M. F. E. de Jeu and E. M. Opdam, Singular polynomials for finite reflection groups, Trans. Amer. Math. Soc. 346 (1994), no. 1, 237–256. 10.1090/S0002-9947-1994-1273532-6Suche in Google Scholar

[8] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Encyclopedia Math. Appl. 81, Cambridge University Press, Cambridge, 2001. 10.1017/CBO9780511565717Suche in Google Scholar

[9] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, 2nd ed., Encyclopedia Math. Appl. 155, Cambridge University Press, Cambridge, 2014. 10.1017/CBO9781107786134Suche in Google Scholar

[10] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge University Press, Cambridge, 1990. 10.1017/CBO9780511623646Suche in Google Scholar

[11] L. Lapointe and L. Vinet, Exact operator solution of the Calogero–Sutherland model, Comm. Math. Phys. 178 (1996), no. 2, 425–452. 10.1007/BF02099456Suche in Google Scholar

[12] M. Maslouhi and E. H. Youssfi, The Dunkl intertwining operator, J. Funct. Anal. 256 (2009), no. 8, 2697–2709. 10.1016/j.jfa.2008.09.018Suche in Google Scholar

[13] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (1999), no. 3, 445–463. 10.1215/S0012-7094-99-09813-7Suche in Google Scholar

Received: 2015-11-7
Revised: 2017-5-15
Accepted: 2017-9-25
Published Online: 2017-11-15
Published in Print: 2017-12-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2017-0011/html
Button zum nach oben scrollen