Abstract
We give a new proof and discuss an extension of Jack’s lemma for polynomials.
Dedicated to the memory of Petru T. Mocanu
References
[1] J. Bak and D. J. Newman, Complex Analysis, 2nd ed., Springer, New York, 1997. Suche in Google Scholar
[2] H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz Lemma, Amer. Math. Monthly 117 (2010), 770–785. 10.4169/000298910x521643Suche in Google Scholar
[3] L. Brickman, T. H. Macgregor and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. 10.1090/S0002-9947-1971-0274734-2Suche in Google Scholar
[4] D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661–676. 10.1090/S0894-0347-1994-1242454-2Suche in Google Scholar
[5] R. Fournier, Some remarks on Jack’s lemma, Mathematica 43 (2001), 43–50. Suche in Google Scholar
[6] R. Fournier, Bound-preserving operators and the maximum modulus of extremal polynomials, Comput. Methods Funct. Theory 14 (2014), 735–741. 10.1007/s40315-014-0080-0Suche in Google Scholar
[7] R. Fournier and S. Ruscheweyh, On two inequalities for polynomials in the unit disk, Progress in Approximation Theory and Applicable Complex Analysis, Springer Optim. Appl. 117, Springer, Cam (2017), 75–82. 10.1007/978-3-319-49242-1_4Suche in Google Scholar
[8] R. Fournier and M. Serban, An extension of Jack’s lemma to polynomials of fixed degree, Comput. Methods Funct. Theory 7 (2007), 371–378. 10.1007/BF03321651Suche in Google Scholar
[9] A. Frolova, M. Levenshtein, D. Shoikhet and A. Vasiliev, Boundary distortion estimates for holomorphic maps, Complex Anal. Oper. Theory 8 (2014), 1129–1149. 10.1007/s11785-013-0345-zSuche in Google Scholar
[10] I. S. Jack, Functions starlike and convex or order α, J. Lond. Math. Soc. (2) 3 (1971), 469–474. 10.1112/jlms/s2-3.3.469Suche in Google Scholar
[11] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, Math. Ann. 89 (1923), 103–121. 10.1007/BF01448091Suche in Google Scholar
[12] S. Miller and P. Mocanu, Differential Subordinations, Marcel Dekker, New York, 2000. 10.1201/9781482289817Suche in Google Scholar
[13] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), 3513–3517. 10.1090/S0002-9939-00-05463-0Suche in Google Scholar
[14] S. Ruscheweyh, Convolutions in Geometric Function Theory, Université de Montréal, Montréal, 1982. Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A note on properties of the restriction operator on Sobolev spaces
- Approximation of entire transcendental functions of several complex variables in some Banach spaces for slow growth
- On a new proof and an extension of Jack’s lemma
- On the conjecture of Hayami and Owa concerning the class ℛ(α)
- The order of starlikeness of uniformly convex functions
- The Weyl–von Neumann theorem in von Neumann factors
- A remark on observability of the wave equation with moving boundary
- Best approximation in quotient probabilistic normed space
Artikel in diesem Heft
- Frontmatter
- A note on properties of the restriction operator on Sobolev spaces
- Approximation of entire transcendental functions of several complex variables in some Banach spaces for slow growth
- On a new proof and an extension of Jack’s lemma
- On the conjecture of Hayami and Owa concerning the class ℛ(α)
- The order of starlikeness of uniformly convex functions
- The Weyl–von Neumann theorem in von Neumann factors
- A remark on observability of the wave equation with moving boundary
- Best approximation in quotient probabilistic normed space