Home Best approximation in quotient probabilistic normed space
Article
Licensed
Unlicensed Requires Authentication

Best approximation in quotient probabilistic normed space

  • Mausumi Sen , Soumitra Nath and Binod Chandra Tripathy EMAIL logo
Published/Copyright: May 25, 2017

Abstract

In this article, we study the best approximation in quotient probabilistic normed space. We define the notion of quotient space of a probabilistic normed space, then prove some theorems of approximation in quotient space are extended to quotient probabilistic normed space.

References

[1] M. Abrishami Moghaddam and T. Sistani, Best approximation in quotient generalised 2-normed spaces, J. Appl. Sci. 11 (2011), no. 16, 3039–3043. 10.3923/jas.2011.3039.3043Search in Google Scholar

[2] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math. 46 (1993), 91–98. 10.1007/BF01834000Search in Google Scholar

[3] I. Golet, On probabilistic 2-normed spaces, Novi Sad J. Math. 35 (2005), no. 1, 95–102. Search in Google Scholar

[4] S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun. 12 (2007), 11–23. Search in Google Scholar

[5] B. Lafuerza-Guillén, D. O’regan and R. Saadati, Quotient probabilistic normed spaces and completeness results, Proc. Indian Acad. Sci. Math. Sci. 117 (2003), no. 1, 61–70. 10.1007/s12044-007-0005-1Search in Google Scholar

[6] H. Mazaheri and S. M. Moshtaghioun, Some results on p-best approximation in vector spaces, Bull. Iranian Math. Soc. 35 (2009), no. 1, 119–127. Search in Google Scholar

[7] K. Menger, Statistical metrices, Proc. Natl. Acad. Sci. USA 28 (1942), 535–537. 10.1073/pnas.28.12.535Search in Google Scholar PubMed PubMed Central

[8] A. Pourmoslemi and M. Salimi, D-bounded sets in generalized probabilistic 2-normed spaces, World Appl. Sci. J. 3 (2008), no. 2, 265–268. Search in Google Scholar

[9] S. Rezapour, 2-proximinality in generalised 2-normed spaces, Southeast Asian Bull. Math. 33 (2009), 109–113. Search in Google Scholar

[10] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334. 10.2140/pjm.1960.10.313Search in Google Scholar

[11] A. N. Šerstnev, Random normed spaces: Problems of completeness, Probabilistic Methods and Cybernetics. I, Kazan University, Kazan (1962), 3–20. Search in Google Scholar

[12] M. Shams, S. M. Vaezpour and R. Saadati, p-best approximation on probabilistic normed spaces, Amer. J. Appl. Sci. 6 (2009), no. 1, 147–151. 10.3844/ajassp.2009.147.151Search in Google Scholar

[13] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren Math. Wiss. 171, Springer, Berlin, 1970. 10.1007/978-3-662-41583-2Search in Google Scholar

[14] B. C. Tripathy and R. Goswami (2015), Vector valued multiple sequences defined by Orlicz functions, Bol. Soc. Parana. Mat. (3), to appear. 10.5269/bspm.v33i1.21602Search in Google Scholar

[15] B. C. Tripathy, M. Sen and S. Nath (2012), I-convergence in probabilistic n-normed space, Soft Comput. 16 (2012), 1021–1027. 10.1007/s00500-011-0799-8Search in Google Scholar

Received: 2015-6-29
Revised: 2016-3-16
Accepted: 2017-5-9
Published Online: 2017-5-25
Published in Print: 2017-6-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2017-0008/html
Scroll to top button