Substitution of aqua ligands from ds-[Pt(en)(H2O)2](ClO4)2 and cis-[Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = Ν,Ν′-dimethylethylenediamine) by glutathione (reduced) (GSH) in aqueous medium - A Kinetic And Mechanistic Study.
-
S. K. Bera
, P. S. Sengupta and G. S. De
Abstract
The kinetics of the interaction of glutathione (reduced) (GSH) with [Pt(en)(H2O)2](ClO4)2and [Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = N,N'-dimethylethylenediamine) have been studied spectrophotometrically as a function of [substrate complex], [glutathione] and temperature at a particular pH (4.0). The reaction was found to proceed via rapid outersphere association complex formation followed by two slow consecutive steps. The first step involves the transformation of the outersphere complex into the innersphere complex containing Pt-S bond, while the second step involves chelation when the second aqua ligand is displaced. The association equlibrium constant (KE) and the two rate constants k1 and k2 have been evaluated. Activation parameters for both the steps have been calculated using Eyring equation. The low enthalpy of activation and large negative values of entropy of activation indicate an associative mode of activation for both steps.
© 2014 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Kinetics and Mechanism of the Reaction of Ninhydrin with Chromium(III)-tryptophan Complex in Absence and Presence of Surfactants
- Site of Bond Breaking in mer-(Dihapto-[60]fullerene) (Dihapto-1,2-Bis-(DiphenyIphosphino)ethane Tricarbonyl Tungsten(0)
- Kinetic and mechanistic studies of mono(terpyridine)- to bis(terpyridine)-nickel(II) complex formation reactions involving a range of substituted 2,2′:6′,2″-terpyridine ligands: an investigation of π-stacking interactions in outer-sphere complexes.
- Kinetics and mechanism of reaction of α-picolinic acid with dichloro-{2-(arylazo)- heterocycle}palladium(II) complexes
- Simulation of Complex Chemical Kinetics
- Kinetics and Mechanisms of the Reduction of Chromium(VI) by 2-Mercaptoethanesulfonic Acid in Aqueous Solution: Difference in the Mechanistic Process of Reduction with Noncarboxylate Thiols
- Salt Effects on Reactivity for Substitution Reactions of Pentacyanoferrate(II) Complexes
- Substitution of aqua ligands from ds-[Pt(en)(H2O)2](ClO4)2 and cis-[Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = Ν,Ν′-dimethylethylenediamine) by glutathione (reduced) (GSH) in aqueous medium - A Kinetic And Mechanistic Study.
- Synthesis, Characterisation and Dissociation of a Glycinate Bridged Trinuclear Co(III)-Cu(II)-Co(III) Complex
- Notes for Contributors. Inorganic Reaction Mechanisms (IRM)
Articles in the same Issue
- Kinetics and Mechanism of the Reaction of Ninhydrin with Chromium(III)-tryptophan Complex in Absence and Presence of Surfactants
- Site of Bond Breaking in mer-(Dihapto-[60]fullerene) (Dihapto-1,2-Bis-(DiphenyIphosphino)ethane Tricarbonyl Tungsten(0)
- Kinetic and mechanistic studies of mono(terpyridine)- to bis(terpyridine)-nickel(II) complex formation reactions involving a range of substituted 2,2′:6′,2″-terpyridine ligands: an investigation of π-stacking interactions in outer-sphere complexes.
- Kinetics and mechanism of reaction of α-picolinic acid with dichloro-{2-(arylazo)- heterocycle}palladium(II) complexes
- Simulation of Complex Chemical Kinetics
- Kinetics and Mechanisms of the Reduction of Chromium(VI) by 2-Mercaptoethanesulfonic Acid in Aqueous Solution: Difference in the Mechanistic Process of Reduction with Noncarboxylate Thiols
- Salt Effects on Reactivity for Substitution Reactions of Pentacyanoferrate(II) Complexes
- Substitution of aqua ligands from ds-[Pt(en)(H2O)2](ClO4)2 and cis-[Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = Ν,Ν′-dimethylethylenediamine) by glutathione (reduced) (GSH) in aqueous medium - A Kinetic And Mechanistic Study.
- Synthesis, Characterisation and Dissociation of a Glycinate Bridged Trinuclear Co(III)-Cu(II)-Co(III) Complex
- Notes for Contributors. Inorganic Reaction Mechanisms (IRM)